Vol. 1 Number4 Copyright 1977

July 1977

A BIG HOWDY from Lubbock, Texas, the new home of the Texas Instruments Consumer Products Division. The Lubbock
facility is the production and repair site for all TI consumer products. By relocating to Lubbock, PPX and the Calculator Staff
will be better able to serve you. We apologize for any delay in correspondence, program submissions, orders, etc., caused by
this move. Now it’s business as usual and we look forward to offering you the best of service. Please refer all PPX

correspondence to:

TEXAS INSTRUMENTS PPX

P: ©O:. Bax 33

Lubbock, TX 79408

PPX POTPOURRI

1. With the production of the TI-59, Texas Instruments
announced the official opening of PPX-59, a software ex-
change for owners of TI Programmable 59’s. Details indi-
cate that PPX-59 will operate very much like PPX-52 has
in the past, with similar pricing and exchange policies and a
common newsletter, the PPX Exchange. PPX-52 and
PPX-59 will operate independently of one another with
separate catalogs, members guides, order forms, etc.
Membership in one Exchange will not entitle one to
membership privileges of the other.

2. In July, PPX-52 will release its first Software Catalog
Addendum. From this point on, an Addendum will be
issued whenever there are sufficient new submissions to
warrant one. The Addendum will include not only the
latest programs available from PPX, but an entirely new
Key Word Index and Author Index. When necessary, a
complete Software Catalog will be printed that will

combine all the preceding addenda and catalogs.

PROGRAMMABLES “GO NAVY”’

H. Alan Burkett, LCDR, Civil Engineer Corps, USN

In June 1977, the Naval Postgraduate School (NPS),
Monterey, California, released my thesis (co-authored by
LCDR Harry Kruse) entitled: ““Investigation of Card Pro-
grammable and Chip Programmable Pocket Calculators
and Calculator Systems For Use at Naval Postgraduate
School and in the Naval Establishment.”” Research
conducted from September 1976 through March 1977
focused primarily upon the SR-52 and HP67/97 systems as
compared to each other, and to the projected TI-59 and
National Semiconductor (NS-7100) systems. Among the
parameters compared were calculator functions, basic and
advanced programming techniques, and programmability,
with emphasis on educational and practical applications.
The thesis concluded that these machines provide
significant advantages in teaching and learning mathemati-
cal concepts and that programmable pocket calculator
systems are a potentially important management and
tactical support tool, Navy-wide.

Concurrent with our research, NPS initiated several
pilot projects using the SR-52 calculator. One such project
involved a class conducted for 15 students in the Naval
Intelligence curriculum. The course material included
numerical procedures, Fourier analysis, differential equa-
tions, and the Laplace transformation. Although two
weeks of class time was devoted to learning SR-52
capabilities and programming, this class covered 15%

more material and completed a final examination judged
to be 20% more difficult than any previous examination in
similar courses. The overall grade point of the class was
equivalent to that of the previous class! The following
quarter these same students completed a graduate course
which included solving differential equations with the
Runge-Kutta method and computing cumulative/inverse,
cumulative normal, and binomial distribution values,
using programmable calculators, rather than referring to
tables. Manual methods for solving these problems are
normally too tedious and time consuming to be
demonstrated past the ‘‘exposure’” level; thus, the
programmable calculators proved to be very advantageous
to. this class. (In this type of matrix and array
manipulation, we found that the SR-52 had much more
storage capacity than .the HP67/97, especially when
sacrificing program steps to gain extra data registers.)

Another interesting result was the ‘‘discovery’’ of the
process we named ‘‘Thinking Process Transmutation,”’ in
which the programmable calculator user subtly, but
inescapably, reorganizes his own thinking processes to fit
the logical processes used by the calculator. Whether or not
the user recognizes it, he acquires new capabilities to
organize his thoughts, to define the necessary steps and
then to develop the most efficient procedures to solve any
problem. It is our strong belief that the refinements and
complexities developed through this thought process carry
over into all other portions of the individual’s life. In
short, after being told what to think all of one’s life,
programming calculators teaches one how to think!

As a follow-up to our thesis research, we have been
asked to perform continuing analyses to determine the ad-
vantages associated with daily use of card-programmable
calculators’ in a Fleet environment. These analyses include
daily tasks and special data manipulations in a variety of
work situations. Measurements of programmable calcu-
lator’s impact on reliability, maintainability, and opera-
tional readiness are being conducted in areas such as
management and accounting, material and quality control,
and engineering design and analysis. Standard programs
are being developed where applicable and the feasibility of
implementing Navy-wide use of these programs is being
evaluated. In this effort, we are visiting various Naval
commands to explain and demonstrate the advantages of
using programmable calculators.

LCDR Kruse and I serve as points of contact, program
reviewers, and as data collection/program standardization
focal points for the Navy at 1220 Pacific Highway, San
Diego, CA. 92132.

CALCULATOR DOCTOR
This column is intended to answer frequently occurring
questions relating to either SR-52 operation or program-
ming. These questions are obtained from TI’s Consumer
Relations Department. If you are having difficulty with
your calculator or with programming, please contact TI’s
Consumer Relations Department for assistance.

QUESTION: I recently purchased an SR-52 and the op-
tional Statistics Library. All of the programs run success-
fully, with the exception of the Random Number
Generator program. Both the Basic Library (BA1-13) and
the Statistics Library (ST1-04) programs give five random
numbers and then start repeating these ‘‘random
numbers.’’ The cards are programmed correctly according
to the listing in the books. What is wrong?

ANSWER: The Random Number Generator program
was designed around the SR-52 as it was first produced.
Unfortunately, the program will not work with later
versions of the calculator, due to a slight change in the
operating characteristics. For a corrected Random Number
Generator program, please contact the TI Consumer
Relations Department, Lubbock, Texas.

QUESTION: My SR-52, (in which I had extra memory
capability installed by a non-TI source) lost a display seg-
ment four months after purchase. I sent it into the Service
Facility in Lubbock to have it repaired. I sent it insured
and enclosed a copy of my proof-of-purchase to verify the
in-warranty status. I also enclosed a note describing the
difficulty. I promptly received my calculator back from TI,
COD, but it evidently was not repaired since the display
was still defective. Why wasn’t my calculator fixed, and
why was it returned to me COD?

ANSWER: Texas Instruments does not support modifi-
cation of the SR-52 to increase the number of available
memories. In addition, the modification of your calculator
by ‘‘a non-TI Source’’ automatically voided the 1-year
warranty. The service facility is required to immediately
return any modified calculator (regardless of the nature of
the modification) to the sender in the same condition as it
was received, The only way the Service Facility would be
able to repair your calculator would be if you were to
enclose a signed statement authorizing them to restore your
calculator to as-manufactured condition (remove all
modifications) as part of the repair process. You would,
however, still be charged out-of-warranty repair charges,
with vour calculator being returned to you COD.

QUESTION: My calculator display is becoming difficult
to read due to minor scratches on the lens. Is there any way
I can correct this situation, without having to have a new
lens installed?

ANSWER: Depending on the extent and depth of the
scratches, you might be able to restore the lens to useable
condition by using ordinary toothpaste as a rubbing
compound. Clean the lens with a soft cloth moistened with
water, then apply the toothpaste in a circular motion with a
cotton ball. Change the cotton ball frequently and
continue to apply the toothpaste until the surface scratches
are gone.Remove any excess paste with a water moistened
cotton ball.

THE JOY OF PC-100
Maurice E. T. Swinnen
We all know that the PC-100 print-cradle is capable of
printing inputs/outputs, list entire programs, and trace
program execution. The latter feature is the one that sold
me. My first programs were developed and edited by single
stepping back and forth to get the bugs out. Now it is a
cinch and I am developing a pioneer spirit: ‘‘Remember the
good, old days when we had to single step?”’

You might not know that the use of the PC-100 greatly
reduces our dependence on the user-defined keys. Before
when using the SR-52 alone, we needed one user-defined
key for each input/output, or we had to resort to the some-
times inconvenient use of the RUN key. We can now
design programs in which pressing a single key produces a
string of printouts. Add to this some strategically placed
paper advance instructions and we get our data in
presentable, easy to read blocks.

We can also modify existing programs, adding *prt and
*pap instructions where needed. But, unfortunately, some
of those programs are intended for SR-52 use only, and
when print commands are inserted, they give double and
even triple printings of the same value. This is especially
true of print commands that use the same label as a sub-
routine in several segments. The trick to success here is to
dump the result of the label into a memory register the first
time it is used. If the label is used in a subsequent segment,
delete it and insert a register call instead. Granted, you give
up the convenience of being able to call the segments in any
order, but you gain a neat printout. Consider the following
examples*LBL, A, 'RCL, 0,1 +,RCL, O 2, =, *prt;
S AERI REA - ane - Shrta ity *IRLSCo A *log,
*pri, *rtn. When A, B, and C are pressed in that order, the
printouts will be A, A, B, A, C. Obviously we don’t want
A to print out that many times. The interpretation of the
results becomes confusing and the margin of error
increases considerably. So we rewrite: *LBL, A, RCL, O,
P RE LS 2 =0 S 199 s At e LB,
REL =10 o #nrf, Sty SR C RO K9, -*log;
*prt, *rtn. This works fine but is wasteful on user-defined
keys. The real PC-100 pro writes: *LBL, A, RCL, O, 1, +,
RCL, O, 2, = *prt, * VX, *prt, *x2, *log, *prt, *rtn. With
17 steps-instead of 31, you get a printout of all three
results, each one printed just once, always in the same,
easy to remember sequence and by pressing just one key.

The PC-100 is usually used for printing inputs/outputs.
But the printer can do much more. The first one to
capitalize on this idea was R. Carlisle Philips with his
PC-100 Plotter program (PPX #900001). He used the
decimal point to plot the independent variable, using for
contrast cights and ones on either side of the curve. A
somewhat similar program was published by Warren B.
Offutt in Electromics, March 1977. He also used the
decimal point for plotting, but used only ones for back-
ground. Although very practical, both programs produce a
printout suffering from a certain lack of contrast or
visibility of the curve. It is possible to improve upon this
visibility by printing a string of digits below each point on
the curve, but only one zero above the point. An analysis
of Warren B. Offutt’s routine shows in essence the
following: *LBL, A, STO, O, O, 9, *1/x, *LBL, sin, INV,
dsz AL X 1 0= GTO:, sin, PLBLE"*1, *ptt, HET,
Enter a number between | and 11 and press A. The decimal
point moves up the y-axis if the number is low, down if the
number is high. Replacing 9, *1/x, (in the above) by 4,.,5,
*1/x, gives a background of twos. You can experiment
with 3, 2.25, 1.8, 1.5 and 1.125 for other backgrounds;
however, contrast does not seem to improve noticeably.
Try this short program segment: *LBL, A, STO, 0, 0, ., 8,
o1 Bli; sin - INV; *dsz, *1, 1, 0,54, . 8, =, GTO, 5in;
*] BL, *1’, *prt, HLT. Enter a number between 1 and 10
and press A, Now a high number moves the decimal point
up, a low one moves it down. Below the curve we have a
field of eights but above the curve we only have one single
zero per point. The background field can easily be changed
by replacing both eights in the program segment by any
other pair of digits, identical ones or different ones.

Another eye-pleasing plot is the bar graph, (PPX
#900013) which can be obtained by the following sequence:
*EBLE. A, *CMs, 41, = STO, 0,70, *LBL,; sin, INY,
Sdsz 1 RO 0, T as] i =k - o ek P 02 31 R
sin, *LBL, *1°, *prt, HLT. Enter a number from 1 to 10
and press A. The printer will now produce a string of ones
of length corresponding to the number entered. An
interesting variation to the bar graph plot is the following:
*LBL. A, STO, 0,0, *LBL; 5in, INV, *dsz; *1" X1, O;
$ S = GTO; s, CEBE, %, “prt, HET. Enter-a
number between 0 and 9 and press A. The same type of bar
graph results, but the first digit of the string is not a 1 but
the number entered, indicating the relative height of the
bar.

Another interesting way to show off your PC-100 is with
matrix printing. For example, key in the following: *LBL,
A *ix, 3, *pap, RCL,0; 1, A’ ;RCE, 0,2, *B%, RCL; 0,
1 ACRCLE, 0,4, *A% RCELDES 2R RCLI06: 207
RCL, 0,7, %A%, RCL; 0,8, *B’, RCE, 0.9 %C "INV, *fix;
*rin, *LBL, *A’, =, 1,0, =, 4, *rtn, *LBL, *B’, =,1,0,
Of s e rtntn AEBE, ¥E = r 8 NV flog,. = *Drt - Mt
This routine will print out all nine data memory contents,
provided you have stored only one digit in each register. To
try it out, store 1 in ROI, 2 in RO2 up to 9 in R09, and
press A. Because of the inability of the PC-100 to print
leading zeroes, each horizontal row of the matrix is
presented as a fix 3 decimal. (Merely ignore the zeroes to
the left of the decimal points.) This routine is perfect as a
read-out for tic-tac-toe: zeroes for the unoccupied squares,
ones for the player, eights for the machine. (B. R. Kelso’s
Hexpawn (PPX #910012) would be a perfect candidate for
this routine.) In games like these it is always more realistic
if the printer keeps score, not the player. The SR-52 has
enough memory available between data ‘and parenthesis
registers to support even a 5 by 6 matrix.

Even though I develop a lot of game programs, I also use
my PC-100 for some very down to earth purposes. The
satisfaction I gain here is different; it makes my life easier
by saving time and effort and by reducing the number of
mistakes to a minimum. For example, since I began
reconciling my checkbook using the Reconcile Checking
Account program (BA1-07), I have had fewer problems
balancing my account. However, because I didn’t have a
printout, my checking account still caused me problems.
To solve this problem, make the following changes to
BA1-07: 1) After *LBL D insert two steps *iferr, sin

2) After *LBL E insert two steps; *iferr cos

3) After the Iast step of the program, which with
the 4 insertions is now 133, add: HLT, STO, 1, 0, + /-,
*prt, RCL; 0, 8, -, RCL, 0,9, -, RCL, 1,0, = 5TO, O, 8,
*prt, GTO, 1, 3, 4, *LBL, sin, SUM, O 8, *pap, *prt,
RCL,;4; §8.-%prt, *pap,-GTO.-1,-3. 4, *LBL, cos, *CMs;
510, '0,9, *fix; 2, *pap, *prt; "pap; GTO: L ;4

Now when I write out checks to pay my bills at the end
of the month (that’s when I make most of my mistakes) I
install the SR-52/PC-100 on my desk and proceed as
follows: My bank charges 10 cents per check, so I enter this
as ., 1, INV, E. If your bank does not charge you anything
enter thisas 0, INV, E. Then 1 enter my current checkbook
balance and press INV, D. Also any deposit, such as the
monthly pay check, is entered as INV, D. Now I enter the
amount of each check (expense) as a positive number and |
press RUN after each amount. The printer shows each
amount as a negative number, subtracts it from the
balance, subtracts the charge per check and prints out the
new balance. I can enter deposits at any time, without fear
of getting the program out of step. All deposits are offset
by spaces to make their identification easier when I

transcribe the results into my checkbook. With a little
ingenuity, variations in bank service charges can be written
into this program.

By using my PC100, I no longer have to depend on user-
defined keys or the run key. 1 can also list strings of
outputs as well as print answers individually. Pictorial
printing, in the form of bar graphs and banners, is within
my grasp. This powerful tool has removed the drudgery
from my programming, and has actually put the “joy”’
back in.

FROM THE ANALYST’S DESK
® [f you have purchased the ‘*Yahtzee’’ program (PPX
#310013) and have noticed that the last die is always a zero,
we suggest the following modifications to the program:

As Listed: Change to:

000 99 *pap 000 34 tan
001 33 cos 001 03 3
02 06" 6 00269 - 29
003 06 6 003 69 5"
004 06 6 004> 69 %9’
005 06 6 Q05=5[9:1 5 8Y:
006+ 93+ QDG g5 Y51
007 99 “*pap 007 = 7 *§
144 05 5 144 06 6
1537 033 1533 04 4
162 01 1 2022
170==P8. -8 1702094

{3 =il 71000
R0 077 180 08 8
187 A 65 X 187 55 +
188/ V42 S8TO 1882 44 SUM

With these changes, the program runs as originally docu-
mented, except that an additional trailing zero is displayed.
This zero should be ignored.

* If you have purchased the ‘‘Degrees, Minutes and
Seconds Display’’ program (PPX #900037) and have
noticed that the seconds are always displayed in units of
ten (10, 20, 30, etc.) then we suggest the following
modifications to the program:

As Listed: Change To:

079 06 6 079055

112. =000 . 0 112 34" tan

LIS 27— L I, P13 =03 :

114 49 *PROD 114 99 *pap
115 - 99 *pap 115 94 +/-
I36: 05 == 1165587 Tty
HT—=99 - *hap 117 99 *pap
=" *4 18— 209559

119 77 *4 0 e £ i T

With these changes the program runs as originally docu-
mented, but the last digit should be ignored.

e Since the original mention of fractured displays (May,
PPX Exchange) many members have requested an in-depth
discussion on how to generate these displays. They also
noted that not all SR-52’s create them in the same way. To
clarify this unique feature of the SR-52, we offer the
following detailed discussion of “‘Fractured Displays.”’

A fractured display occurs when the = key is pressed,
after a so-called ‘‘mask’’ has been formed in the first pend-
ing operation register (register 60). A mask is a string of
codes, which, by means of a special modification, causes
various non-standard symbols to appear in the display. As
was noted in the last newsletter, a mask is created by
loading a string of mask codes into the display register,
performing an arithmetic function (¥y, y%, =, X, -, or

+) to push the codes into register 60, and then modifying
the codes by a display-to-memory operation (STO, *EXC,
SUM, *PROD, INV SUM, or INV *PROD) on register 60.
There are thirty-six different combinations of arithmetic
operations/display-to-memory functions, many of which
produce different results. For simplicity, all further
discussion will be limited to the combination . . . + SUM
60 . . . =, with the mantissa of the mask positive and the
exponent negative. For this particular combination, the
mask codes are as follows: a 5 will produce a degree sign, a
4 will produce a minute sign (single quote), a 2 will produce
a second sign (double quote), a 6 will produce a minus sign
(hyphen), a 3 or a 7 will produce a blank, and 0, 1, 8, and 9
are transparent. In addition, the codes 8 and 9 will permit
leading zero’s.

Upon pressing the = key, two things happen. First, the
number currently in the display register is modified (frac-
tured) according to the mask in register 60. Second, both
the mantissa of the mask and the mantissa of the number
currently in the display register are shifted three digits to
the left. Although the SR-52 displays 10 mantissa digits,
extra digits which are normally not displayed are
maintained for accuracy. The number of extra digits,
known as ‘‘guard’’ digits, varies from 2 to 3, depending on
when the particular calculator was manufactured. Normal-
ly, this variation is not significant, since only 10 digits are
displayed, but because a fractured display causes a shift of
3 digits to the left, those calculators with only 2 guard
digits will always show a zero as the rightmost displayed
mantissa digit (after the shift). Regardless of the number of
guard digits maintained, this digit will never fracture. (This
non-suppressable zero has caused some consternation
among users of the ‘‘Yahtzee’’ and ‘‘Degrees, Minutes,
and Seconds Display’”’ programs (PPX #910013 and
#900037). The appropriate revisions to these programs are
provided above.) The simplest way to tell which type of
calculator you have is to key the following sequence: 3,
*1/x, -, 3, *1/x, =. If your displayed answer is zero, then
your calculator has 2 guard digits.

The following describes how to develop a mask which
causes the calculator to simulate a LRN mode display. (Do
not key in the following; merely follow the building blocks
as we construct our mask.) The end result should appear:

XXX, XX
where the x's represent numbers. The unique feature of
this display is a space between the third and fourth
numbers. Leading zeros are desired, so we will use 9’s for
the mask codes:
959 -99
We wish for everything else to be blank, and therefore will
fill the remaining positions with 3’s (including the
exponent):
3333999399-33
We must use a negative exponent according to the
conventions mentioned above. Since the mantissa will be
shifted three digits to the left, we need to insure that the
last three mantissa digits are in the guard digits. To do this,
we will need to add three arbitrary digits on the left end of
the mantissa:
1.003333999399-33
Note the placement of the decimal point, which insures
that the exponent will not change. Our building blocks are
now complete.

Since the mask we developed above requires a thirteen
digit mantissa, it cannot be keyed in directly. This number
can be developed by storing it in a register and then
summing in the necessary guard digits. There are two ways
to do this; from the keyboard or under program control.

From the keyboard, if using register 01, key in the

following: 1.003333999 EE 33 + /-STO013.99 EE43 + /-
SUM 01. The next process is to choose the numbers you
wish to be displayed. For this example, we will attempt to
display 979 55. First, we must arrange each number to
match our mask codes: 1.000000979055. Again we have a
thirteen digit mantissa, obtainable by the use of a storage
register, as mentioned above. Therefore, key in:
1.000000979 STO 02 5.5 EE 11 +/- SUM 02. Now, to
create a fractured display from the keyboard, press: RCL
01 = SUM 60 RCL 02 =. Your display should now appear
979 55.

To implement the above example under program control
key in the following program sequence:

*rset LRN *LBL A STO 02 1.003333999

EE 33 +/-STO 01 3.99 EE 43 + /-

SUM 01 0 HLT STO 03

*LBL B 1 EE 22 STO 04 CLR

RCL 02 EE 13 SUM 04 CLR

RCL 03 EE 10 SUM 04

RCL 01 +~ SUM 60 RCL 04 HLT LRN

Key in a one, two, or three digit number (for our example,
979) and press A. Then key in a one or two digit number
(for our example, 55) and press RUN. When a number ap-
pears in the display, press =. To regenerate the fractured
display without having to key the numbers in again, just
press CLR, B, then press =. The exponent 22 at step 043
was an arbitrary choice - any other exponent would work
just as well, as long as the exponents at 053 and 063 were
changed accordingly. For example, if we had chosen an
exponent of 23 at location 043, instead of 22, then the ex-
ponents at 053 and 063 would have had to be 14 and 11,
respectively.

If vour calculator has two guard digits, you will find that
the 'last digit of the fractured display produced by the
simulated LRN mode program listed above will always be
zero. It may prove instructive, even to those whose
calculators have three guard digits, to try to modify the
program to shift both the mask and the number to be
fractured one digit to the left. We will print this modifica-
tion in the next issue of PPX-Exchange.

With careful study of the above example and some
practice, one should be able to create fractured displays of
all types, adding a new dimension to programming.
Although fractured displays are somewhat complex to
implement, they can be useful, and almost as important,
enjoyable.

EDITOR’S NOTE: Due to the nature of fractured
displays, the results of your efforts may be - NOTHING
(especially if you use a negative mantissa)! The only way to
really understand “‘fractured’’ displays is to experiment
with them.

The PPX [Exchange is published every other
month and is the only newsletter published by Texas
Instruments for SR-52 owners. You are invited to
submit items you feel are of general interest to other
SR-52 users. Inputs should be limited to 3 double-
spaced typed pages. Please forward your newsletter
inputs and any questions to:

TEXAS INSTRUMENTS PPX

P. O. Box 53

Lubbock, TX 79408

Copyright © 1977, By Texas Instruments Incorporated

	V14_01
	v14_02
	v14_03
	v14_04

