Vol. 4 Number 1 Copyright 1980

e} 4
"HANGE

January/February 1980

T1-59 GOES TO LAKE PLACID
The TI-59 programmable calculator is making an
Olympic debut at Lake Placid this winter. Using a Solid
State Software™ module developed for the Olympics by
Texas Instruments, the TI-59 will aid in verifying the resulis
computed by the TI-SCORE™ Computer System (System
for Computerized Olympics Results and Events). The four
major events include: bobsled competition, cross-country
~skiing; speed skating, and the biathalon. The Olympic
module is programmed to handle all aspects of scoring for
each event; thus permitting immediate handheld verifica-
tion. Due to the limited quantity manufactured, this module
is not available to the public.

PPX POTPOURRI

1. Order Forms — Please use PPX order forms when
ordering T1-59 programs and acessories from PPX. These
forms were designed for two purposes: First, for our mem-
ber's convenience. Second, they are used by PPX to keep a
record of the date a member's order was received, filled and
shipped. If you do not have access to an order form, please
write your member number and the program/accessory
number and name on a sheet of 8% x 11” paper, Due to.the
quantity of orders received, we can no longer document
order forms for those members who write their orders on
checks and money orders. For this reason, such orders will
be returned (unfilled) to the requestor.

2. Ordering Hint — The number of PPX filled orders
that are being lost within members’ companies are on the in-
crease. This is primarily because the self addressed mailing
label contained only the name of the company to which it
was addressed. For this reason, we ask that all corporate
members (memberships which are undera company’s name)
have their orders shipped to the attention of a particular
person within the company. This can be done by simply
writing the person’s name on the order form label.

PPX-59 PROGRAMMING CORNER

This column is devoted to PPX-59 programming sugges-
tions. If you have a program(s) that you would like 1o see
made available through PPX-59, send your suggestions to
PPX. In this way, members who enjoy programming are
made aware of your programming needs. PPX-59 is not
staffed to do custom programming; therefore, member
suggested programs will become available only if another
member of PPX-59 comes to the rescue.

Our members would like to see:
e The following relative motion programs for navigation:

1. Course, time and distance to intercept another moving

vessel.

2. Time and distance of closest point of approach (CPA).

3. Other ships course and speed from two bearings and

distance.

4. Time and distance from storm (CPA) and course to

avoid storm.

® Programs for analysis and design of carbon dioxide
and Halon fire extinguishing systems,

® A program to alphabetize alpha data.

® A chemical equation balancing program.

MORE SUBROUTINE LEVELS FOR THE TI-59
Barry S. Tepperman

Editor’'s: Note: Dr. Tepperman is an active member of
PPX as can be seen by the number of excellent programs he
has in the catalog. While programming on the TI-59, he
JSound it necessary to use recursive programming routines
(that is, a routine that repeats itself until a ceriain preset
condition is met). Upon finding that the TI-59's six levels
of nested subroutines were too restrictive, he came up witha
solution which uses the memory registers as a push-down
stack. Recognizing that this solution could help others, he
wished to share it with other PPXers. The following article
describes this method and also supplies an example of how it
iis used.

When a SBR command is encountéred under program
control,-the flow of processing is immediately diverted to
the-subroutine'ealled: The location number following the
subroutine call is stored in the subroutine return register,
The INV SBR command terminates each subroutine and
processing transfers back to the location stored in the
subroutine return register. Up to six return locations can
be stored in the subroutine return register, allowing the
nesting of up to six subroutines. (See pages 1V-46 and 47 of
Personal Programming for a more indepth explanation.)

By simulating the functions of SBR and INV SBR with
GTO and GTO IND, respectively, the limitation of only six
subroutine levels can be overcome. To do'so, the function
of the subroutine return register must also be duplicated.
The implementation of a push-down stack in the data
memory registers can be used to accomplish the functions of
the subroutine return register.

A push-down stack consists of a block of memory regis-
ters that are accessed indirectly through a pointer address —
a memory register containing the register number of the next
empty register in the stack. Absolute return addresses are
stored in the stack on a last-in/first-out basis. Each return
address is stored in whichever memory register happens
to be at the top of the stack at that moment (the current
value of the stack pointer). The pointer is then incremented
by one so it will contain the address of the next empty
register. Recalling a return address requires decrementing
the pointer by one and indirectly recalling the contents of
the register indicated by the pointer,

When a subroutine is to be called, the return address is
stored on the stack using STO IND, and the pointer is
incremented by one. Now, instead of using a SBR com-
mand, GTO xxx (where xxx is the absolute address of the
subroutine) is used. At the end of the subroutine the return

Subroutine Levels (Cont.)

address is recalled by the method outlined above and then
stored in a preassigned register which we will call the return
register. By using GTO IND XX (where XX is the address of
the return register) in place of INV SBR, program execution
will be transferred to the correct location (the location
following the GTO command).

It should also be pointed out that the stack need not only
be used to store return addresses. Intermediate results can
also be stored in the stack. If the stack is to be used in this
way it is important that the stack contain enough registers
to store these results. In addition, care must be taken that the
segment of the program following the return location
removes all the intermediate results that are above the next
return location in the stack and uses them in reverse order
in which they were put on the stack. Failure to do this could
cause the program to incorrectly interpret the data as an
address.

Let’s take Ackermann’s function as an example to demon-
strate the above technique.

The function, A (m,n)1s detmed by two non-negative ——

integers, m and n, such that:
A(0,n) = n+l
A(m.0) = A((m-1), 1)
A(m,n) = A((m-1), A(m,(n-1))) for m,nx0
By using the simple case, A(1,1), we can see how Ackerman’s
function is computed:
A(LD) = A((1-1), A(1, (1-1)))
= A0, A(1,0))
= A0, A((1-1), 1)
= A(0, A(0,1))
= A0, (1+1))
= A(0,2)
= 2+1
=3
Fortunately, the simple example didn’t require recursive
programming; however, if we choose a less trivial case, such
as A(3,2), we would have to use the definition of Acker-
mann’s Function recursively. Try computing A(3,2) by
hand. (Warning: this computation may take up to one
hour). Before A(3,2) is solved it expands to:
A(3,2) = A(2, A(2, A0, A(0, A0, A0,1))))))
Below is a program listing for computing Ackermann’s
function using a push-down stack. Note that the current
value of m and n are stored in registers 00 and 01, respec-
tively. For this example we have assigned reglbter 02 as the
stack pointer and register 03 as the return register. Registers
04 99 make up the stack.

FuR -

& P u_'r3.

oo I e 31 R 1

oy

i

i
s
=

o

[P £ T P

a0 = 3
pag <12 =k
oog 42 3
gig 0i 47
oy oo i
012 01 22
O3 <00 &
pid. &3 {4
3 &y R 1 4
gie 04 &
0 42 &

g &

To use the program, enter the integers m and n and press
labels A and B. respectively. After B is pressed, program
execution begins. The computed value of A(m,n) will be
displayed. To solve the above example, A(3,2) = 29, the
calculator takes about 12 minutes and fills the stack 55
registers deep, which is 27 nested subroutines. If the stack
is overflowed ((3,7) will do it), a flashing zero will result.

In our program listing:

e Steps 000-027 contain the initialization and input
routines.

e Steps 028 - 032 are the display answer routine.

® Steps 033-048 calculate A(0O,n) and indirectly address
the stack to find a return location if m = 0 (Note that the
initialization routine stored the absolute address (28) of the
display answer routine at the bottom of the stack). If m =0
then the program branches to location 049.

® Steps 049 - 061 calculate A (m,0) if n = 0, otherwise a
branch is made to location 062.

e Steps 062 - 078 deal with the case where m, n % 0. The
current value of m and the absolute return address (79) are
step 033 to begin another recursion,

e Steps 079 - 089 recall the value of m from the stack, decre-
ment it by one, and return to step 033 for yet another
recursion.

True, the example of Ackermann’s function is a show-
piece of recursive programming and may have little real
value to you. However, the technique used in simulating a
push-down stack in data memory could be of value to you in
your own applications.

NEW USES FOUND FOR FIX, LBL, AND
THE DECIMAL POINT

Donald R. Lambert

Editor's Note: PPX member Donald Lambert, of Los
Angeles, California, has been an avid supporter of PPX
through program submissions and inputs 1o the newsletter.
While being a professional programmer and serving clients
through his programming service, he has come across
various methods that enable him to get a little more out of
the T1-59 calculator.

After two years of use, I have found that no matter how
much you get out of a calculator, you seem to want more.

~The following exampies represent-methods 1 have used to

squeeze a little more out of my TI-59.

e A commodity trading system required that after com-
pleting calculations, one of the following five messages be
printed using a PC-100A/C:

OFEN SHORT POSITION

HOL T 1 PESFTTON
OFPEH - PRSI TR
HOL T L0k THE
£1 02 QUT POSTITION

Normally, this would have required about 50 steps per
message, for a total of 250 steps exclusive of the testing re-
quired to determine the proper message. But note that the
messages were composed of only six parts: HOLD, OPEN,
LONG, SHORT, CLOSE OUT and POSITION. Sub-
routines could be written to print out the common words.
But the problem with this is that the positioning of the words
OPEN and HOLD change due to the fact that LONG has
four letters and SHORT has five letters. The program below
uses the FIX 2 keystrokes to make the necessary positioning
change. You can see how this works by doing the following:
Enter the alphanumeric code for OPEN (1331731) into the

January/February 1980

display and press OP, 01, OP, 05. Observe the location of
the printout of OPEN. Again enter the code for OPEN, but
this time press Fix, 2, OP, 01, OP, 05. The Fix 2 adds two 0’s
which, when stored in OP 01, are recognized as a blank
space. To see how this is done in program format, enter the
program below and press labels A, B, C, D, and E to print
out the five respective commodity trading messages given
above.

n= = [EAgs i

® Lbl can be used as a next-step-Nop. This is useful
whenever there is need to use a keystroke only under certain
conditions. An example of this'is given by the routine below
which uses the keystroke +/= (Step 014) as a Nop when it
follows Lbl during program execution. This routine was
taken from a moving average program which used register
00 as a pointer for indirectly storing and recalling registers
01 through 50 in descending order.

The program that this routine was taken from only
allowed entries greater than or equal to one. Therefore,
two cases must be examined.

1) When the number entered is between one and two, it is
first integered to equal one, and then placed in the t-register
(step 005). Subsequently, a one is placed in the display
register and compared to the t-register’s contents (this test

is performed by INV EQ, where EQ stands for x=t). Since
the answer to the INV EQ is “no”, the accompanying
address is skipped and processing continues at step 011, This
results in a 49 being summed into register 00. (The +/- is
ignored due to the Lbl preceding it.)

2) When a number greater or equal to two is entered, that
number is placed in the t-register. This causes the INV EQ
to be answered “yes”, and program control is transferred
to step 014, which is the +/-. The result is that a negative one
is summed into register 00.

The above example is only one of the many possible uses
of Lbl as a next-step-Nop. Any key that can be used as a
Lbl can be used in a similar manner.

® The last routine given below, shows two more uses
for the decimal point.

First, at step 013 it is used to clear the display. This use
does not effect pending operations, or the error signal as
would the CLR or CE keys.

Second, the decimal points between steps 16-48 are used
to separate a number of possible outputs. By pressing E’, the
program below squares integers from 0 to 10, so there are
ten possible outputs. Notice that starting at location 19 is
the square of 1, at location 22 is the square of 2, at location
25 is the square of 3, etc. The calculator ignores all but the
first decimal point it passes and prints/displays the result.

Mot
LI i)

o T e
¥ LT

o
et
i
o
|

oy A o

memser o[| | [[[|]]

NOTICE OF CHANGE OF ADDRESS

In order to ensure uninterrupted service, please submit
change of address at least six weeks prior to change.
Please mail to:

Texas Instruments, Inc.

PPX Department

P. O. Box 53

Lubbock, TX 79408

NAME:
OLD ADDRESS:

NEW ADDRESS:

EFFECTIVE DATE:
PHONE:

January/ February 1980

FROM THE ANALYST'S DESK

e For those members who have the program “Linear
Programming with Mixed Constraints” (PPX-59
#388004D), the author has informed us that this program
does not always give correct solutions. To correct this
problem, the following corrections must be made.

1. Listing changes.

OLD REVISED
o7 070 &8
107 42
i0s 0z
izn 47
izi 59
123 17 i
1249 - 23
138% 7 T e
139 i fx :
i4e 4 H
142 N ag =3 =
149 72 53= i
50 48 63 29
69 9 B2 7
174 o= o8 na 2

2. Insert a 0 at location 231 of listmg Part 11

e PPX member William H. Beebe, Lilburn, Georgia,
uses the following routine when testing the status of flags:

'{lrj:]-
1305
ooe

pr

o b= T3] s Y e

WAL E 0 e G0 G e

i)
B e
f = x|

£
id
s}
Lk

Enter the number of the flag to be tested and press label A, If
that flag is set, the calculator display will flash the flag
number.

e PPX member, Ralph W. Synder of Indianapolis,
Indiana, sent us a program which demonstrates two pro-
gramming tricks which can save program steps. The pro-
gram he wrote approximates the rate of interest on an
ordinary annuity or annuity due based upon an expanded
form of Bailey’s formula. One unusual aspect of this pro-
gram is that the equation for ordinary annuity and annuity
due differ only by three signs. Mr. Snyder noted this and
took advantage of it. Given below is the program plus two

program notes which point out the programming “tricks”.
ORDINARY ANNUITY LISTING

TR 2 475 o W B | C

T Ww Bt

R S A |

] LT o e a
R T CIPCH e O CF) == 1

i e

User Instructions:

1. Enter program.

2. Initialize by pressing RST.

3. Enter present value, press STO 04.

4. Enter number of payback periods, press STO 01.

5. Enter the amount of payments, press STO 03.

6a. Compute the ordinary interest rate by pressmg R/S.

6b. Compute the annuity due interest rate by pressing, St
flg 2, R/S.

The following data was entered and the computation was
traced using a PC-100A. Due to limited space, the trace
given below is only for the case where the + followed by a
- causes an error condition.
Data for trace: .

Ordinary annuity

Present value $6115.646855
periods 20
Payments $450.

PC-100A Trace for ordinary annuity:

=2 n + [Error condibon cansed by rwo signs
- ~ V encountered in sucoesiion

1FE =s=Duplicates display valug,

CE reentets display valug
and removes crror condition

=== iplicates display value

-+=CE removes error condition

Program Notes'

1. The first trick uses a key sequence (shown bracketed

in the Ordinary Annuity Listing) which allows the legal

use of a plus sign followed by a minus sign. This

technique, which could be particularly useful when

programming equations such as the quadratic
formula, is explained below.

If flg
2
n E Transfer address varies depending upon the
nn location of second sign.
+ f Order varies depending upon the two
equations used.

CE See program step 57.

January/ February 1980

CARTESIAN GRAPH

This program graphs ordered pairs of the form' X.Y
providing X and Y are both positive integers between |
and 9 inclusive. As many points as desired of the possible
81 can be plotted. Run time for the graph is about 25 sec-
onds. This program can be used as a subroutine or in con-
junction with another program to produce graphs of
calculated data points. A PC-100A/C is required.

(1,
prod

PPX wishes to thank the author of “Cartesian Graph”,

(7,5)

9. To delete a point, enter the coordinate in X.Y form and

press C.

(Note: Deleting a point that has not been entered or
“entering a point that was previously entered will result

in an incorrect graph.)

Example:
Graph the following coordinates:

1), (2,3), (3,5), (4,7), (5,8), (6,7), (7,7), (8,3), (5.1) and
uce the graph. Then delete point (7,7) and add point
and print the resulting graph.

Jared Weinberger, for his excellent program. Enter Press Display Comments
User Instructions: A 0 Initialization
1. Partition to 399.69 by pressing 7 OP 17. L1 C L1 Data point (1,1)
2. Enter Program. 2.3 C 2.3
3. Enter the following contents into registers Ry, to Rey. 3.5 C 3.5
(by entering the constant and pressing STO nn, where 4.7 C 4.7
nn is the appropriate register number). gg g gg
F0004000, 40 25 :':" 83 '®) 83
<, al £ 26 9.1 g 9.1 |
iz. 43 3 = E To print graph
1£. 44 2. 53 £
20, 45 4000400040, &0 : ;
24, 45 400000, i { &
28, 47 40 62 ! :
ol 35 Soggooon, £3 =
ZE, 4% 4000, £ z N :
. SU OOoOooong, &5 -
a, 51 | FE00aRN) 1 o \IN\ALD ¥ :
. 52 7 £a\J /7 VIOCRIIC - Tois iy
3 A 4»]“]."@3%; th (CEqi o5 £ 14 To delete (7,7)
; % CATETCA LG Gl hS LVEL 154 To add (7,5)
4. Repartition t0479.59 by pressing 6 OP 17 and recor E To print graph
magnetic cards. . .
5. Press A to initialize (clears Rgg to R and sets correct . 5
partition). 5 : s
6. Enter data point in X.Y form (where X and Y are posi- .
tive integers between 1 and 9 inclusive). Press C. The * y .
coordinates X.Y will be printed. (Note: To supress %
automatic printing of coordinates set flag 0 by pressing < - :
St flg 0) Y
7. Repeat step 6 for all data points. o ———y)
8. Press E to print Cartesian Graph of entered data e e e TGS O FLA R T
points.
TI-59 Listing*
000 76 LBLOisT 16 A" i 3 |04 S0 SOifEE el RASHION - 55 i08 89 54 0OF
oot i1 g 019 42 870 88" - NNI055 - 22 THWEZ=E 6081 {33) = 8] igs 04 o4 04
G082 04" ¢ o8 -~ B8 301038 - SEENIaSS SR TEREY4 . 29 B BEE - 69 110 &9 &3 OGP
F30,062 BF 078 2 AV 039 437 REL IO T 8BS AS075y B2 -3 %3 - 38 Tiig. OO I |1z 6 i R G
004 17 2473 - 59 ANTIHAOR SIS0 NS (10 OGS ¥ 87 7 #9723 -3 9 Do Fl § i 98 ADY
0 O ol R e T Sl P (ST SR TS R e G Y el S By 5 3 | g Sl L: 22 Aoy
43 : R T iy 01 - 1 |9482° 22 'STOjoeg 22 HO7E - GO - 00098 63 114 OO0 00Ji: S8 BDY
oo?7 6% OGP 00 " 0% |84 3=~ 00 Aot 73 £ b I 1 e 2115 g2lidz 281 R4S
gag: 1y OO 85 F j0a4T 23 REelOg2 (0. Goi0B0 42 STO98° 62 1is 43 RCL[iS4 7& LBL
g09s 25 EER o4 w4 (045 B0 . OOI0eE2 43 RCLUS1. 50 solggs -2n Tiv .S T8I SE - 10 o
010 91 RA5IGES 00 § (048 3 o B0 SOisd &3 OF {00 73 148 689 G- ¥:3n " Do BYE
gid 2o bElges 98 I= a7 B Toe - = RBAC 50 =38, - O s o I bR ik s R o 7 L
01z 13 E- 030 42 S¥Oi842 06 & |84 73 RC#lOZ2 &8 iZg &9 OR3E 8E LGT0
gi2 &7 1EFI03 00 00043 o g GRS a0 OnHes s 53 -ogH I -03) 0239 i3 L
gi14 OB DOO3R ¥3 RC#|050 on =026 35 b Eud- o 68 e e - 47 RiE
5 Sl E OSE-SEn SOty 22 INWOE?. 43 RBCLUCS 30 3plid2 42 40
gis o PRIBFTE - OS2 SLSTElERE T e ERI0E" "7 ROEI2A"ES B8P
P < Fe ERLIDES RE- % 053 BE 05 0O5|0ss " 95 SqHOAE g [2S a2 p2
*Note: Key in steps 112 through 115 by pressing Dsz, Ix1, STO 82, BST, BST, and (. Then single step (SST) to location 116.

January/February 1980

From The Analyst’s Desk (Cont.)

When these steps are executed in succession (as
happens when flag 2 is not set), the calculator performs the
first operation and the result is correct. The CE keystroke
is used to remove the error condition.

2. The second trick uses the If flg to mimic the CE key-
stroke in duplicating the display value (see steps 32, 39, and
49 of the Ordinary Annuity Listing and Personal Program-
ming page V-15). The difference is that the If flg does not
remove the error condition.

® To ‘bug’ is human . . . every programmer that has
written a program is familiar with errors or program bugs.
If you find an error in a program that you have submitted to
PPX, please send a corrected page to be exchanged with the
page that has the errors. PPX analyst’s will replace the old
with the new. When changing the listing of a program,
always send magnetic cards with the revised listing.

THE NEW “E” ADDENDUM

With this addendum, which all members should have
received by March: 15, there are now over 2100 programs
listed in our catalog. Due to limited space we can only men-
tion a few of the 500 programs in the E addendum. Here are
a few programs PPX analysts found to be especially inter-
esting.

® With the housing situation being what it is, “Buying
vs. Renting a House” (PPX #088013E) could be a timely
investment. This program calculates the buyer’s first year
federal tax advantage, equity value, and the renter’s
comparative financial position.

e Graphic output of deviations is now, available with

“List and Plot Deviations from the Mean”(PPX #268028E). (

Using up to 42 entries, this program finds the mean and plots
the number of standard deviations-{ffom the mean'for ¢ach
entry. In addition, it generates-a plot 'showing the amount
each entry differs from a user selected value.

® “Section Properties — Complex Areas” (PPX
#668079E) calculates just about everything you ever wanted
to know about a section: composite area, centroid location,
polar moment of inertia, moment and product of inertia
about the axes parallel to user defined axes, orientation of
the principal axes, and maximum and minimum moment of
inertia. This program can be used for any complex plane

area that can be divided into rectangular, triangular,
circular, semi-circular, rounded corner, and general
section areas.

® Do you dread the chore of checking your child’s
math homework? Well, never fear, “Print Long Multiplica-
tion” (PPX #928025E) is here. Using a PC100A/C, this
program prints out the whole process of long multiplication
as taught in grade school text books.

® PPX analyst’s are still trying to guess the secret number
in “Son of Jive Turkey” (PPX #918142E). The fiendish
critter, unlike our original “Jive Turkey”, generates a new
truth probability which is displayed before each guess.

e New capabilities are possible with “Decimal/Fraction
Conversion” (PPX #368011E) Using this program, non-
repeating and repeating (up to 10 repeating digits) decimal
numbers can be converted to exact fractions, and vice versa.

* You and your TI-59 can make beautiful music together
with “Guitar Chord Teacher” (PPX #986009E). Upon the
entry of one to twelve notes making up a musical chord,
this program prints, on the PC-100A / C, the entire neck of a
guitar showing all the positions on frets one through fifteen

in which the chord may be played.

® A new program that could prove very useful is
“Progressions” (PPX #398058E). This program can com-
pute the Nth term and the sum of the first N terms of an
arithmetic, geometric, harmonic, or arithmetic/geometric
progression.

The PPX [Exc| [Exc]hange is published every other month
and i§ the anly fewsletter published by Texas Instru-
ments for TI-39 owners. You are invited to submit
itemsyyou feel are of: general interest to other TI-59
users. Inputs-should ‘be limited to 3 double-spaced
typed pages. Please forward your newsletter inputs
and any questions Lo:

FEXAS INSTRUMENTS PPX

P.O. Box 53

Lubbock, TX 79408

Attn: PPX Exchange Editor

Copyright® 1980, by Texas Instruments Incorporated

TEXAS INSTRUMENTS
INCORPORATED
PPX = P.O. Box 53 ® Lubbock, Texas 79408
U.S. CALCULATOR PRODUCTS DIVISION

ADDRESS CORRECTION REQUESTED

#1034532-19

BULK RATE
U.S. POSTAGE
PAID
Permit No. |
Lubbock, Texas

	v1p1
	v1p2
	v1p3
	v1p4
	v1p5
	v1p6

