ppi:-Y

Exchange

(Vol. 5 Number 4 Copyright 1981

July/August 1981)

Advanced Memory
Operations

By Don O’Grady

In a continued effort to help TI-59 programmers get more
computing power from their programmable calculators, this
article will describe the techniques applied in treating pro-
gram memory as data through the use of STO and RCL.
There are many opportunities to apply such a process and
even a novice programmer should require only a few
moments to come up with several examples.

One of the more obvious uses of this technique is to load
data registers by entering the appropriate information in the
form of program instructions and then converting this infor-
mation to data memory through repartitioning. The informa-
tion may then be retrieved as though it were stored in the
data register by conventional means. This operation is
especially useful when numbers involving guard digits must
be entered into a data register as in the following example.

continued on page 2

Inverse Days
Between Dates

By Jay Claborn

Program 20 of the Master Library module allows one to
calculate the number of days between two dates. Several
PPX members have inquired if the inverse function (given a
number of days and a date, find the second date) is also
available. A quick check of the PPX Catalog revealed that we
did not have such a program. The task seemed easy enough,
so [decided to write the program myself. The purpose of this
article is not only to provide you with a useful piece of soft-
ware, but also to give you a guided tour of the development
of this or any other program.

As with all problems, the first step was to CLEARLY
DEFINE THE PROBLEM. Here, the task was to produce a
TI-59 calculator program that would allow the user to enter a
date and a number of days from that date and have the
calculator find the resulting date.

The second step was to REVIEW AVAILABLE
RESOURCES. In this case | read the Master Library manual
section which describes the method of ML-20. I also down-
loaded ML-20 into main memory and listed it on the printer.
The ML-20 documentation revealed that for any date a

unique “factor” could be calculated and that the number of
continued on page 8

TI-59 Fast Mode

By Palmer O. Hanson, Jr.

Editor's Note: Through experimenting with unusual key se-
quences, some TI[-59 owners have found that their
calculators will respond to certain illegal sequences in ways
not intended by the designers. A few of the byproducts of
these experiments include fractured display graphics, access
to hardwired functions, indirect hierarchy operations, printer
interrupts, and the subject of this article — a fast mode.

Due to algorithm requirements, internal operations are
normally executed in scientific notation. In order to format
the trace and SST output properly, programs run in main
memory convert to floating point format and back again be-
tween each step. As these functions are not provided for
maodule programs, this conversion is not necessary, making
programs that run in a module execute faster than programs
that execute in main memory.

The sequence described in this article supresses the
floating point conversion, which increases speed. Other
known results outlined in this article are the discoveries of
Mr. Hanson and his peers. This sequence is not a Tl design-
ed feature, but rather a machine “quirk™; therefore, there
may be additional unpredictable aspects of its behavior.

The user should take extreme care to observe the restric-
tions outlined below. The consequences of failing to do so
can be as severe as a “system crash” from which control can
only be regained by turning the calculator off and on. Use of
the fast mode may have unexpected consequences and can-
not be endorsed by TI. Nor will TI be responsible for software
damage caused thereby. This item is presented solely as an
item of interest to TI-59 owners.

Soon after the TI-59 became available users found that
code executed from a library module would run faster than
the same code when downloaded into user memory. As ear-
ly as December 1977, Tom Ferguson reported the effect in
Volume 2 Number 12 of the “52 Notes.” He found that the
routine C part of ML-16 would take approximately twice as
long to find 69 factorial with the code in user memory than
the same code when called from the Solid State Software™
module. Others found a much smaller difference in speed
when executing the code for the module diagnostic (Pgm 01
SBR =). More recently in a Letter to the Editor in Volume 4
Number 6 of the “Exchange” Herman Burstein reported a
two to one speed differential when using program 20 of the
Statistics module. He asked, “Is there by any chance a way
to obtain comparably fast running time from a program in

(user) memory?” The answer is YES! The technique has
continued on page 4

Memory Operations (continued)

Here, the objective is to place the value -8.124436835231 .
x 10* in data register 47. This data register corresponds to
program memory locations 576 through 583. The first step
in the procedure is to partition your calculator by pressing 4
2nd OP 17. Then key in EE D Inx 1/X 2nd Nop RCL 24
RST starting at step 576. The explanation of how this works
is presented below; but for now, verify that the correct
number has been entered by repartitioning your calculator to
at least fifty data registers and recalling register 47.

This technique will generate some strange looking se-
quences; however, it can be extremely useful in storing fre-
quently used constants. In this case, the technique is
especially useful as the value in question requires greater
precision than the display can handle. For example, when
working with a TI-58C where programs and data cannot be
permanently recorded on magnetic cards, entering such con-
stants as part of the program and then repartitioning at the
appropriate time can speed program entry.

Other examples include modifying and relocating existing
program instructions. Consider a situation in which a long se-
quence can be modified to handle multiple purposes by
simply changing a few instructions as switching a “+" in-
struction to a “ —". Or, what about the possibility of moving
blocks of code to make room for new program instructions?
And, of course, all of this and much more can be handled
from either the keyboard or under program control.

STRUCTURE

In order to understand how to apply this technique, it is
first necessary to obtain an in-depth knowledge of how the
calculator’'s memory is structured. As most TI-59 program-
mers are already familiar with the eight program step per
data register trade-off, this subject will not be covered here. If
you need a review, see page V-42 of “Personal Programm-
ing.” Before proceeding any further it would be advanta-
geous to assign each position within a register a name. In
order to avoid confusion with numeric data, alphabetic
names are used. The names are assigned in relation to the
position of the two-digit program codes seen in program
memory and are repeated for each block of eight program in-
structions (the equivalent of one data register) where the ad-
dress of the first instruction is an even multiple of eight.

NAME OF POSITION
Location of Step First Digit of Second Digit of
in Block Program Code Program Code

0~ U B W N
OCExR—0mAO>
VZreImMmOw

Returning to the example presented in the introduction:

Program Program Program Cormesponding
Step Instruction Code Names
576 EE 52 AB

Page 2

577 D 14 CD

578 Inx 23 EF
579 1/X 35 GH
580 Nop 68 1J
581 RCL 43 KL
582 24 24 MN
583 RST 81 OP

Now, comparing the above to the value in data register 47,
the following relationship can be observed:
- Register 47
-8.124436835231 x 10*
O.PMNKLIJGHEFC x 10P4

Admittedly, this relationship is not immediately obvious as
the duplication of several of the digits in order to fill all six-
teen positions obscures the one-to-one correspondence that
does exist. However, experimentation will show that the
above description is correct.

Two things remain unexplained by the above. First, the
origin of the negative sign in front of the mantissa has not
been accounted for; and second, the value stored in position
B does not appear in the number retrieved from the data
register. Obviously, these factors must be related. As will be
shown below, the value of position B controls the signs of the
mantissa and of the exponent, as well as telling the calculator
whether or not an error state exists in the register. But before
continuing with the details concerning position B, a formal
description of the structure of a data register will be
presented.

A data register consists of sixteen digits or positions ar-
ranged in the following format where the letters assigned to
each position correspond to the definition given for the same
memory area treated as a group of eight program instruc-
tions. The apparently “backwards” orientation of the posi-
tions coincides with the fact that program steps and data
registers are numbered in opposite directions as illustrated in
the page V-42 of “Personal Programming.”

OPMNKLIJGHEFCDAB
b =
Mantissa

Note, that even though the calculator may display the reg-
ister’s contents in floating point notation, it is always stored
in scientific notation. The mantissa to the number is stored in
the first thirteen digits. Positions E, F, and C hold the guard
digits which are retained to improve accuracy. The next two
digits, D and A, are reserved for the exponent. The last posi-
tion in the register (B) is used to control the sign of the man-
tissa and exponent.

ADDRESS CHANGES

In order to ensure uninterrupted service, please submit
address changes to PPX at lease six weeks prior to the
effective date of the change. Send your name, membership
number, old and new addresses to:

PPX
P.O. Box 53
Lubbock, TX 79408

JULY/AUGUST 1981

REPRESENTING DIGITS

Each position in a register is made up of four bits. A bit is a
memory location which can have two states, on and off. A
bit that is turned on is represented by the number 1; 0 is used
if the bit is turned off. By assigning values to each of the four
bits the digits can be represented as illustrated by the follow-
ing:

Bit 3 Bit 2 Bit 1 Bit 0
Digit 2 =8 or—n et A |
0 0 0 0 0
— 0 0 0 1
2= 0 0 1 0
3= 0 0 1 1
- 0 1 0 0
E 0 1 0 1
= 0 1 1 0
= 0 1 1 1
8= 1 0 0 0
9 1 0 0 i
For example:
6= O0x2* +1x22 + 1x2' +0x 2°
6= O0x8 +1x4 +1x2 +0x1
6= 0 + 4 + 2 +0

The numeric value of the digit stored in the position B has
no meaning in itself. Its meaning is derived from the
assignments of the bits which make up position B. Some of
these bits have multiple assignments; but for purposes of this
discussion the assignments given below are all that are
necessary.

Bit 0 - No assignment

Bit 1 - Indicates a Negative Mantissa when On

Bit 2 - Indicates a Negative Exponent when On

Bit 3 - Indicates the Existence of an Error State
when On

Combining these assignments with the chart presented above
provides the following information concerning the meaning
of a digit stored in positon B when treated as a data
memory.

Digit 0,1 23 4.5 6.7
Mantissa + - - -
Exponent + + - -

Additionally, a value of either 8 or 9 indicates that an error
state exists in the data register.

USING STO AND RCL

Obviously, the use of the data memory instructions is
necessary when treating program instructions as data. Unfor-
tunately, these instructions do not always “see” the entire
eight program codes and in other cases will actually modify
their format.

The first problem lies in the fact that bit 0 of position B has
no meaning as a part of data memory. Consequently, this
location is effectively ignored by the data memory instruc-

J ULY/AUGUST 1981

tions. To illustrate this point, key in the sequence (D Inx 1/X
2nd Nop RCL 24 RST beginning at step 576. Now, reparti-
tion as in the introductory example and examine the con-
tents of register 47. The value retrieved is identical to the
value observed using the previous sequence. To continue
the illustration restore the value called to the display by press-
ing STO 47, repartition the calculator, and examine program
step 576. Upon doing this you will find that the “(” instruc-
tion has been changed to “EE” as in the original example.

To understand how this has happened, note that the “(”
instruction placed the digit “3” in position B. In recalling and
storing register 47, bit O of position B is discarded, or turned
off, causing this 3 to become a 2.

The second problem concerns the assignment of bit 3 of
position B. Turning on this bit by placing 8 or 9 in position B
tells the calculator that an error state exists in the correspond-
ing data register. To see this, modify the above example
once more by beginning the sequence with a 2nd Fix instruc-
tion at step 576. Now, recalling register 47 places a flashing
9.99999999 x 10* in the display because the error state has
been interpreted as an overflow condition and filled the
display accordingly. Attempting to transfer or restore the in-
formation found in register 47 is impossible in this case
because the display can only move nines into any data
register. Executing a STO 47 and examining program steps
576-583 reveals a 2nd List command (program code 90) at
step 576 and 2nd Prt instructions (program code 99) at the
remaining locations. Observe that even though position B
has been cleared the overflow state still exists due to the
presence of all nines in the data register.

The final problem involves the value of the digit placed in
position 0. This position is used to hold the most significant
digit of the mantissa of the number in the data register.
However, if this value is a zero, the data register operations
select position P as the most significant digit because leading
zeroes are dropped from the display. This problem can be il-
lustrated by changing the last program step in the sample se-
quence from “RST” to the digit “1”. After keying in this se-
quence, repartitioning, and recalling register 47 the value
displayed is -1.2443684 x 10* instead of 0.1244368 x 10*
as some might expect. This difference occurs because the lat-
ter is an improper representation of a number in scientific
notation. Storing the displayed number in register 47 and ex-
amining program memory once more reveals that the entire
sequence has been modified due to shifting the digits of the
mantissa and reducing the exponent of the original number.

BENDING THE RULES

When using this technique to simply load data registers,
the restrictions discussed above pose no problems as there is
no need to use bits “0" and “3” of position B. Also, even if
you format your number incorrectly, the restriction concern-
ing position “0” is not a problem as the calculator will correct
the format for you without altering the actual value of the
number.

The one problem that might arise is a number that requires
the use of an instruction not accepted by program memory
such as LRN or SST. Changing the value to be stored in
register 47 to -8.124435635231 x 10* requires changing
step 580 of the input sequence to a 2nd Del instruction. The

program code for this instruction (56) is easily entered by
continued on page 4

Page 3

Page 4

pressing STO 56 to create the desired code and then deleting
the unwanted STO instruction as in the following sequence:
EE D Inx 1/X STO 56 BST BST 2nd Del SST RCL 24 RST.
Verify that this procedure worked by retrieving the contents
of register 47.

If the objective is to modify or relocate pieces of program
memory, however, writing general purpose routines is im-
practical as strict attention must be given to these rules. But
developing these routines is relatively easy to handle for a
specific program by inserting program steps which have no
apparent use other than as “space-savers.”

If the eighth step in a block of eight program instructions
has a zero for the first digit in the program code simply place
a 2nd Nop instruction in this location instead and push the
required instruction down one step. Likewise, if the first in-
struction in the octet requires that an “8” or “9” must be kept
in the position for the second digit, place another “space-
saver” in this location and load the desired instruction into
the next step. In the latter case, however, 2nd NOP may not
be used, as its program code (68) cannot be maintained in
this position when treated as data memory. Program codes
commonly used to hold this position are 2nd Deg, 2nd Rad,
and 2nd Grad as the angular mode setting frequently has no
effect on the program; and if it does, one particular angular
mode is typically needed throughout the program.

A concentrated effort on the part of the programmer is
needed when dealing with the techniques discussed here;
but the results can be very rewarding.

Fast Mode (continued)
come to be called “Fast Mode”.

Early in 1980 Martin Neef of West Germany discovered
program sequences such that subsequently entered pro-
grams would run at approximately twice the speed of normal
calculator operation (TI PPC Notes, Volume 5 Number 6).
One sequence which will work is, starting from powerup:

GTO 005 LRN Pgm 02 SBR 239 9 LRN RST R/S
The calculator will run for a short period of time and stop
with a zero in the display. Pressing LRN vields 000 09 in the
display. Another LRN vyields O in the display. Yet another
LEN vields 000 00 in the display. At this point the calculator
is in the learn mode at program location 000. The user may
key in his program in a normal manner, and, if appropriate
restrictions are observed, the program will run in the fast
mode. Entry to the fast mode with the Neef technique clears
all memory, the equivalent of a combined CP and CMs from
the keyboard. Manual key-in of short programs was accept-
able with this method, but the capability to run fast mode
cards would have been advantageous. Attempts to load
memory with magnetic cards in the standard manner were,
however, unsuccessful. In mid-1980 [discovered that
magnetic cards could be entered in fast mode in a “load-and-
go” sort of operation under program control. The technique
is similar to the “Reading a Card from a Program” idea
described on page VII-5 of “Personal Programming.”

Some insight as to what might be happening during fast
mode initialization can be gained by examining the down-
loaded ML-02 program in the neighborhood of location 239.

230 2P

238 &7 E&
233 03 03
240 31 317
241 43 RCL
242 07 07

Entry to the library program at location 239 reads the code as
03 LRN, where the LRN is an unintended code caused by
the use of the PGM 02 SBR 239 sequence to enter the
module in the middle of an absolute address. The calculator
logic seems to get confused by the code 31 (LRN) read from
the library module and fast mode somehow results. A code
31 in user memory will simply cause the calculator to enter
the LRN mode and stop with a LRN type display for the
following program location. Fast mode cannot be attained
manually by using the proper keystrokes starting with the
program pointer at 005. Only the callup of the unintended
code 31 using a program in user memory provides fast mode
entry.

Use of the Master Library module is required if the above
sequence is to provide entry into the fast mode. | have
searched for unintended code 31’s in the other modules with
the exception of the Securities Analysis and the Agriculture
modules. Of the 48 code 31's found, only the one at location
423 of program LE-11 in the Leisure Library will also
provide entry into the fast mode. With the Leisure Library
module installed the use of the sequence Pgm 11 SBR 423 9
will provide appropriate fast mode entry.

The KNOWN limitations and restrictions when using fast
mode include:

1. Entry to the fast mode clears all memory.

2. Entry to fast mode returns the calculator to the powerup
partitioning of 479.59 (6 OP 17). Subsequent program
control must be used to change to any other partition-
ing.

3. Entry to the fast mode leaves the calculator in the Fix 0
mode with the Master Library and in the Fix 2 mode
with the Leisure Library. Subsequent program control
must be used to change to any other Fix mode.

4. Entry to the fast mode resets all the flags if there are
zeroes in memory locations 011 through 015, Use of
any other code in those locations may result in other flag
status. For example, an Op 00 command at locations
014-015 will set flags 1 and 7.

5. Programs may be entered or corrected from the
keyboard using the LRN mode. Use of the edit functions
(SST, BST, Ins, and Del) is permitted.

6. Entry of numbers into the display using the number
keys, + / —, the decimal point, CE, CLR and EE is per-
missible.

7. The use of most of the function keys will typically
remove the calculator from the fast mode as a
minimum. Other erratic results have been encountered
including a “crash” from which recovery can be made
only by turning the calculator off. More specific details
on the use of selected function keys follow.

8. Use of the RST from the keyboard with the calculator
stopped will remove the calculator from the fast mode.
A RST used in a fast mode program removes the
calculator from fast mode, and may cause a “crash”.

9. Use of R/S from the keyboard can be used to start a
program in the fast mode. SBR nnn may be used from
the keyboard to start a program at a location different
from the current location. SBR followed by a user defin-
ed label, say SBR A or simply pressing a user defined
label will remove the calculator from the fast mode and
may cause other complications.

10. Once the program is running in fast mode it cannot be

JULY/AUGUST 1981

stopped by pressing R/S or RST. If a stop is not provid-
ed by program control it will be necessary to turn the
calculator off to regain control.

11. While running in the fast mode the calculator will not
recognize a R/S command unless it is immediately
preceded by CLR 2nd CLR (Code 20) Pause Prt, or the
sequence EE INV EE.

12. The RTN command (code 92 entered via INV SBR)
cannot be used as an alternate to the R/S command
(code 91) even if the RTN is preceded by one of the
commands listed in paragraph 11.

13. An attempt to change the location of the program
pointer from the keyboard with a GTO nnn sequence
will remove the calculator from the fast mode and may
cause other complications.

14. Subroutines may not be used in the fast mode. This in-
cludes the callup of library programs with sequences
such as Pgm mm with any of the options on page V-62
of “Personal Programming” or even with the Pgm mm
SBR nnn sequence which was used to enter the fast
mode.

15. Neither user defined labels nor common labels can be
used with the transfer instructions such as the GTO, the
“t" register comparisons, the DSZ, or the flag tests. In
other words, the transfer address must always be an ab-
solute address.

16. Some operations do not run at increased speed in the
fast mode. Examples include the trigonometric func-
tions, and the statistics and conversion functions, which
operate at the fast mode speed even in normal mode.
The heavy use of these functions in the module
diagnostic program explains why the typical two-to-one
speed advantage for fast mode does not occur for that
program.

A sample program provides an introduction to the use of
the fast mode. Locations 000 through 015 provide for the
fast mode entry. Locations 016 through 035 and 240
through 253 provide for safe entry of four data banks using
the “load-and-go” technique and a prompting message for
the program to follow. Locations 254 through 275 provide a
short demonstration program which is the equivalent of the
one first used by Neef in his demonstration of the fast mode.
A bank 4 card is also required with the number 100 in
register 02. All three card sides should be recorded with the
partitioning at 479.59 (6 Op 17). The sequence of operator
actions to run the program are, starting from powerup:

1. Enter bank 1. The display will show a one.

2. Press RST and then R/S. The calculator will run for a
short time and stop with a zero in the display. The
calculator is now in the fast mode, but the memory has
been cleared.

3. Re-enter bank 1. The printer will print a one to indicate
which bank was loaded. The display will show a zero,
indicating it is ready to load the next bank. This step was
needed to restore the bank 1 data which was cleared by
the fast mode entry.

4. Enter bank 2. The printer will print a two to indicate
which bank was loaded. The display will show a zero,
indicating that it is ready to load the next bank.

5. Press 3 and then +/— to enter minus three in the
display. Enter bank 4. The printer will print a minus

JULY/AUGUST 1981

. Enter bank 4. The display will show a zero and the

. Press R/S to start the demonstration program. After

. Press RST to remove the calculator from the fast mode,

three as a reminder that another bank was forced into
bank 3. This step loads the number 100 into data
register 32 where it will be used by the program. The
display will show a zero, indicating it is ready to load the
next bank.

printer will print a four followed by the prompting
message “RUN?".

about 37 seconds the calculator will stop with a 200 on
the printer and in the display.

then press A. The calculator will stop after about 70 sec-
onds with 200 on the printer and in the display, thus
demonstrating the speed advantage of the fast mode.

FAST MODE DEMONSTRATION PROGRAM

Bank 1
goo oo o0 jJoiz o0 O jJo24 25 CLR
GOy - 00 00 FBL3e 00 0 F025 91 RS
ooz 00 O |0i4 00 O J0268 99 PRT
go2 00 O |0i15 00 0 jo27 .25 CLR
004 00 0O |Ole &9 OP J028 91 RS

005 326 PGM|017 00 00)J029 99 PRT
o0é 02 02|018 22 INY|030 20 CLR
007 71 SBR|O19 8 FIX|031 91 R/S
008 02 02|020 22 INY|D32 99 PRT
002 33 399|021 57 ENG|033 &1 GTO
010 09 9022 61 1034 02 02
011 00 0 J023 99 PRTI035 40 40

Bank 2
Sag (a3 NESE 25 CLRj264 95 =
241 "p5 's 1253 91 Rs/Sl265 32 KiT
242 04 4 |254 7FE& LBL|266 69 OP
sS4 ron\ /il s ¥y n j2er 2 20
244 03 ‘37|56 00 0 |268 43 RCL
245 01 1 |257 42 STOl269 00 0O
246 7. 7 S8 B0 0020 22 TNV
247 01 1 259 43 RCL}27 7 Ef
248 69 0OP |260 02 21272 02 02
249 02 02]j261 B85 + |273 66 66
250 69 OP |262 43 RCL]274 99 PRT
251 05 05]|263 32 32|275 91 R/S
Bank 4
s oo
. oi
HEAR oz
£ B3
£ 1

The PPX Exchange is published bimonthly and is the only
newsletter published by Texas Instruments for TI-59 owners.
Members are invited to contribute articles and items of
general interest to other TI-59 users. Authors of accepted
feature articles for the newsletter will receive their choice of
either a one year complimentary PPX membership or a Solid
State Software’™ module. Please double-space and
type all submissions, and forward them to:

Texas Instruments, PPX
P.O. Box 53

Lubbock, Texas 79408
Attn: PPX Exchange Editor

Page 5

COMPLEX NEWTON RAPHSON ROOT FINDER

By Jay Claborn

This program uses the iteration process known as Newton
Raphson to find the roots of an up to 17th order polynomial
with complex coefficients.

METHOD

An initial guess of (1 +j) where j = /-1 is used to start the
iteration process. The guess is divided into the polynomial by
means of synthetic division. If the remainder of this division is
zero, the “guess” is a root. Since the calculator can only find
a root to limited accuracy, the absolute value of the real and
imaginary parts are tested to see if they are less than some
small user entered number epsilon (e). If the real or im-
aginary part is greater than ¢, the guess is adjusted using the
values of the first derivative at the guess. Then the process is
performed over again (iterated).

If a guess is found to be a root, the real and imaginary parts
are stored and the resulting polynomial of reduced order is
used to find the next root. This scheme continues until all the
roots have been found. There are two drawbacks inherent in
this computing method. First, each successive root is found
with reduced accuracy since the order of the polynomial is
reduced as roots are found. This program lists the roots in
the order in which they were found, so that the user can
discern their relative accuracy. Second, it is possible for the
program to get “hung”, and never be able to converge close
enough to the root to satisfy the epsilon test. The first prob-
lem can be helped by using a smaller ¢; however, using a
smaller e increases the chances of the second problem occur-
ring and also increases run time.

This program can be used with or without the PC-100A/C
Print Cradle. If the printer is used prompted input and label-
ed output are produced. The MASTER LIBRARY module
is required to run this program.

RECORDING PROCEDURE

1. Key in the Input Section and record it (bank 1) on one
side of magnetic card (use standard partitioning).

2. Press CP and 9 2nd Op 17 to partition the TI-59 to
239.89.

3. Key in the Working Section and record it (bank 1) on the
other side of the magnetic card.

4. Press CP.

5. Key in the Output Section and record it (bank 1) on a sec-
ond magnetic card.

USER INSTRUCTIONS

1. Read in the Input Section of the program with the
calculator in standard partition.

2. Enter the order (N) of the polynomial and press A.

3. Enter € and press R/S.

4. Enter the coefficients as follows:

Enter Press
Real part of the coefficient of X R/S
Imaginary part of the coefficient of XN R/S
Real part of the coefficient of xN-1 R/S
Imaginary part of the coefficient of xN-1 R/S

Page 6 .

Real part of the coefficient of X0 R/S
Imaginary part of the coefficient of X0 R/S
At this point there will be a “1” in the display.

5. If an error was made in the entry of a particular coeffi-
cient, enter the exponent of X for that coefficient and
press E. Then enter the real part of the coefficient, press
R/S, enter the imaginary part, and press R/S.

6. Read in the Working Section of the program and press

R/S. This part will run for several minutes and stop with a
“1” in the display.

. Read in the Output Section of the program.

. If the printer is attached, press R/S. If additional copies of
the roots are desired press A.

9. If the printer is not used, press R/S to display the real part
of the first root. Press R/S to display the imaginary part of
the first root. Continued pressing of R/S will continue to
display the real and imaginary part of each root. If you
press R/S after the imaginary part of the last root has
been displayed, the display will show “479.59” to in-
dicate that all the roots have been displayed. Pressing
R/S again will start the output sequence over.

SAMPLE PROBLEM

Solve the following cubic equation for all three roots:

00

4X3 + (8+8) X2 + (-7+8) X + (-6-3) = 0.

The actual roots for the equation are:

LA WG AR e

o i

2 2 2ay

Z;

Enter Press Display Comment
Read in the Input Section.
3 Pa 0 Enter order.
.00000001 R/S 0 Enter e.
4 R/S 0 Enter the
0 R/S 0 coefficients.
8 R/S 0
8 R/S 0
7 +/- R/S 0
8 R/S 0
6 +/— R/S 0
3 +/- R/S 1
Read in the Working Section.
i R/S 1 Program runs for

about 7 minutes.
Read in Output Section. If the printer is attached just press
R/S. The printer output is shown below. Otherwise,

R/S 7071067812
R/S -0.5

R/S -.7071067812
R/S -0.5

R/S -2.

R/S -1.

R/S 479.59 All roots have

been displayed.

JULY/AUGUST 1981

PRINTER OUTPUT 00 22 INY[202 218 85 =+ 42 570
01 67 Ewj2i0 7a 219 01 1 S 05
02 o0z ozleit 15 220 95 = 71 SER
HEWTON RAFHSON 203 Os 0& 212 i 221 65 X o1 0t
04 35 + |21z o3 02 2|231 28 =28
Ep g5 02 2 giq E; 9? $ 232 Di Fl
i anon 206 e £ B o 233 91 R/S
e 207 1 |216 43 ReL|225 04 4] 234 81 RST
CAEE. tE X4~ a3 z0s = |21z 00 00 95 =
4. +
B ISTIN
T WORKING SECTION LISTING
& + 000 &5 Op |oeo &2 OF 120 03 o03[180 22 WY
=, e po1 28 zsfost =27 27 izt e3 OF |18l 74 sMs
ooz 63 OF |oé2 36 122 26 2s|lg2 06 06
COEF. OF %t 01 003 36 236|063 04 123 73 RCx|183 69 OP
-7. + oo4 01 1 fosd 71 124 06 0sli84 26 26
B, J 005 72 5T+ |06s 0D 125 42 sToliES 43 ROL
006 08 06 066 64 126 04 04f186 02 02
COEF. OF % 00 007 69 OF Joe7 73 127 69 OP |187 22 INV
-6. + 0028 38 36068 05 128 36 36188 74 SMs
-3 J oge 72 8T+ J089 44 129 36 PGH|182 0& 0o
010 06 06 070 01 130 04 04f190 69 OF
ROOTS pit 00 © Jovi 6% YEr 7l 3
oi2 42 stojos2 25 13200
. 70710567812 + 013 52 352|073 7o 1_?-?- rd
-0, 5 J 014 42 STOJO74 05 134 73
015 53 S3lo7s 44 135 07
- 7071067812 016 43 RCL |076 02 136 44
e 3 017 00 o00f07? &3 137 01
018 85 + [o7s 25 1 69
- . g1e 02 3 |ope 42 139 27 =
=t | Q20 75 - J080- 01 1 73 sCL
- 021 43 RCL Jost 72 : 07 03
p22 08 o03fos2 o7 44 =
INPUT SECTION LISTING 023 95 = 083 69 02 J
024 42 sTOfos4 27 63 2
7% LBL]0S0 0z 2 |100 &2 OF [is0 00 o A LB R EE 2 70
i1 A o051 o032 3 |to1 o0z o02]151 sS4 8% 65 ioleer 7 147 09 03 04
a2 sTolosz o3 3 ftoz o0z 3 |152 22 INY e T e o7 SeeET ar 3
03 o03|052 o 6 |10z 0z 2 |i53 s9 INT S s oF Ao 7 ca
75 - Jos4 e3 op |104 02 2 154 &5 x D s calne e i
I 030 /42 sTOjOsS0 09 150 36 42 ST0
01 1 S5 03 oz “?5_ EH | 295 01 1 021 as o5 joat a0 151 o4 os os
a5 = & 3 [0 00 O |15 00 .0 32 ' g5 -5 o9z 2e 152 10 F IS
a2 STD a7 ‘o0 o HS7 55 o 035 02 3 loos 42 153 43 DL 4
00 00 2 Jtog 04 4)158 71 SER D34 L 45 s1al05a | i3 ted 5 32 STO
85 + 11]103 04 Za Fisa | 017 0% pas o7 o7 lass e 155 | 42 oy 07
g2 o Y0 " 08 -6 160 97 = 026 : a = {56 Ul 73 RC#
95 = 0 Jt1t o0 0 |i6t 85 % e BS AR &> "2
42 STO o lit2 &3 OP W62 Bf 1 Ao 07 {53 13 FPoETS
01 01 o |113 03 o3liez oo o0 335 s Pl gl
0s 9 0 fi14 o1 1 |ie4 0o o 040 z 160 02 65 OP
&2 0OP 0 115 o4 4 165 95 = 041 ']a igi 36 2 27
17 17]ose 69 Dp |11 42 sTOliee 52 OP i e es o4 25 Op
00 0 Joe? 04 D4J1i7 05 0S5lie? 04 04 043 o1 163 1f 25 2§
z stojoes &9 op liie 7t sBRlies &9 oP el o 164 49 37 p3=
08 0sfoés 05 os|i1s 0if oifies a5 os s feocrlian 0o ankies -t 89 o9
s lovo 92 Aovlizo 22 23livo 63 OF i e 43 ret hiee 32 0> 0z
2 lozt &9 op izt 97 pszlizt 33 a3 CoaaBi A B L RS S e
» gtofopz oo oonhzz ot otlive: oa 4 e asapcher SRRl g o 43 ROL
oslo?z o1 1 |123 ot onilira o 7 = g ' | bt =i g
oF lora o7 7 liza 13 1sfize e3 o et L L Tl S
oojors o3 3 |125 &1 GTO|I?s 04 04 051 o- orliii 42 stali?i 43 RCL 33 RCL
3 fove 03 3 ji26 02 pzlive 25 CLR i 2 pa oalize o1 o1 0g 08
1 loz7 &9 op hez 32 3z2fi77 s1 Ris dreade Statiie O 27pis ; 22 INY
i lo7e 04 osfi2e 98 apvlize 7z sTs g0 e e b S e
7 lors es op 129 43 RCLfi7e 0S5 oS Gs= a2 salii= ap srolizs P27 GE oo 00
op loso 05 osf|izo 03 o03fiso 62 op oa: 2L eeili: o0 ozlize o1 o1l23 oo oo
e SR it 8 05? 07 07|17 73 Rex|i7? 95 95 01 1
e b o b e ke e 058 42 stof118 06 oelira 43 RCL|238 91 RS
5 32 sTolize 55 = lies > 5 059 04 04]115 42 stofire 01 01)233 81 RST
7 11 110135 59 INT|i8s o5 5
3 I 36 71 SBRlige s3
02 2 o5 = hi3r o1 0 hes o4 "be OUTPUT SECTION LISTING
03 3 69 op |138 97 s7lise 25 cLR
o1 1 |ose o1 o1f133 65 183 31 R/S 000 43 RCL|oil 14 14Jozz 26 36033 69 OF
o0 o0 fJoso 03 3 |i40 o1 1 jiso 72 ST+ o0t 1618|012 42 STO|02= 43 RCL o34 00 0O
o0 0 fosi o2 2 |141 00 o0 har 05 o po2 94 +--lo1z 03 03Joz4 02 02 |035 98 ADY
63 OP |ogz o1 1 |i42 oo o fi92 poz 42 sTofo14 43 RoLfo25 72 sT=f036 03 3
0z ozfoss o7 7 h4z 85 + |9z 004 01 0is 15 15fo2e 06 oslozr 05 5
02 3 fos4 o2 2 h4d4 53 ¢ hse 005 43 D16 42 stofo27 &3 OF |ozs 03 3
05 5 foss o1 1 li4s s52 ¢ fiss oos 17 0i7 04 04fo2s 26 36lo3s o0z 2
01 1 Joos 04 4 |i46 43 RoLfios po7 94 018 36 Pon|o2s 43 kel [oao o0z 3
02 3 fos7 D0 0 |47 03 o397 nog 42 012 04 04030 o1 o1fo4r oz 2
D3 3 Joss 00 o l148 S5 = fhias poe 02 ozfozo 12 c* Joat 7z sT:f042 03 3
53 3 Jooa oo o h4s o1 1 hiss] 010 021 59 OF Jos2 0e oslods 07 7
Listing Continued Above Listing Continued on Page 8

JULY/AUGUST 1981 Page 7

044 .03 3 o2 0! 1 080 Os O0OB|093 02 2
045 06 & 063 25 = J0g1 32 ¥ITJO99 0% 5
046 639 OP |0o&4 42 STO|OSZ2 63 OP 10D &% OP
047 02 021065 09 091083 32 3o|i0l 04 04
042 63 0P 066 05 5 084 73 RCxQi02 32 XiT
042 05 5067 2 2 J085 0& 0Oeli03 63 0P
050 02 2 o068 42 sTO0S8E 27 IFF 04 06 06
051 DO 0O 082 06 06087 07 O7 D5 97 DSZ
052 &2 OP |o7o &5 OP |oe2 00 00106 2 03
053 07 070?71 00 00)082 S& Sciof 00 OO0
054 29 OF JO72 938 ADY 090 31 RASNOB 72 72
055 19 191073 04 4 1091 32 ¥JTH09 06 6
056 24 CE j0?4 07 7 092 91 R/S|110 &5 OP
057 7e LELJO?S &% OP J093 o1 GTOp11 17 L
0S8 11 A JO7e 04 04094 01 O1pH12 91 R/S
059 43 RCLO7? ©9 OP 1095 0D OO H13 61 GIO
00 o0 0007 36 36]0%9% 9 OP 114 00 0O
Ot 85 «+ JO7S V3 RCEJESY B6 OIS 89 59

Inverse Days (continued)
days between two dates was simply the difference in their
factors.

At this point I was ready to FORMULATE A GENERAL
METHODOLOGY. The basic scheme | came up with
follows:

1. Calculate the factor of the entered date.

2. Add the number of days to the target date to this factor
to get the target date factor.

3. Approximate the target date.

4. Calculate the factor for the approximate target date.

5. Compare the factor calculated in step 4 to the factor
calculated in step 2. If they are identical the target date
has been found.

6. If the factors did not match in step 5, the target date
would be reapproximated and we would go back to step
4,

The general methodology serves to break the whole problem
into several sub-problems which are, hopefully, easier to ac-
complish. As one attacks each of these sub-problems, often a
new perspective is gained on the whole problem and the
general methodology is revised or completely scrapped for a
better methodology. In actuality, the method shown above
was my second try. Originally | had tried to solve for the date
explicitly from the formulas on page 76 of the Master Library
manual. | found this task to be extremely laborious, so |
opted for the scheme outlined above.

The format of the general methodology varies from pro-
grammer to programmer. A flow chart is one tool that can be
used. It provides a clear and orderly diagram of the process.
Step-by-step instructions, such as | have used, can also be
employed. This technique is basically a flow chart that has
been written out instead of diagramed. Other programmers
can do this step in their heads.

My next step was to DETERMINE THE METHOD OF
SOLUTION FOR EACH SUB-PROBLEM. Sub-problem
one was easily performed using ML-20 as a subroutine. Step
two was also done with ease. Figuring out how to do step
three was more difficult. I found it necessary to approximate
the date in two stages and again revise my methodology ac-
cordingly. Starting with step three my new process looked
like this:

3. Calculate the approximate year in which the target date
falls so that the approximation is either in the actual year
or the year after. This can be accomplished by taking the
integer part of the quotient of the target date factor
divided by 365.24. (The factor “365.24” was sort of a

Page 8

compromise factor. Every year has 365 days except for
leap years which have 366. In order to make up for the
inperfect adjustment of the leap year system, the leap
day in the year at the end of a century (years ending in
00) is omitted, except for years evenly divisible by 400
in which the leap year remains. Experimentation show-
ed that 365.24 is slightly less than the average number
of days per year.)

4. Generate the factor for January 1 of the approximate
target year.

5. If the factor generated in step 4 is greater than the factor
generated in step 2, decrease the approximate year by 1
and calculate a new approximate target date factor.

6. The correct target year is now known. To arrive at an
estimate for the target month that is either correct or 1
month past, take the difference of the target factor and
the approximate target date factor, divide it by 29, add
1, and take the integer portion of the result. (The divi-
sion by 29 will yield the approximate decimal number of
months. A factor any larger, say 30, will create prob-
lems on March 1. The “1” is added so that when the in-
teger function is applied the resulting number is the
month number or the month number plus one.)

7. Generate the factor for the first day of the approximate
target month.

8. If the factor generated in step 7 is greater than the target
date factor, decrease the approximate month by 1 and
generate a new approximate target date factor.

9. The correct target month has been found. To find the
target day, subiract the factor that was last calculated
(either step 7 or 8) from the target factor and add 1.

10. Display the answer.

Now that the method of solution was well defined, it was
time to ASSIGN DATA REGISTERS AND CODE THE
PROGRAM. My program is shown below.

000 Ve LBL|0O34 00 00J068 43 RCL
001 11 A J035 41 41)J069 01 0O}
002 36 PGM|036 69 OP |O70 65 x
003 20 201037 39 3210741 01 1
004 11 A |038 71 SBR|O7Z 0D O
005 91 R-sSl039 00 0OlOF3 00 0
006 7o LBLJO4D &5 85{074 &85 E

o

007 13 C Jod41r 32 MNITJO07?S 43 RCL
008 85 + |042 50 IxIj076 09 9
009 43 RCL|043 55 =+ |0?7 55

010 04 04)044 02 2 78 04 4

011 95 = 1045 09 9 |UP9 22 INY
012 42 STO|046e &85 + |00 28 LOG
013 05 O0Sjo47 01 1 |JOB1 95 =

014 55 < 048 95 = |0B2 58 FIX
015 03 3 |04 5% INT|083 04 04
016 06 6 |050 42 sSTO|084 91 R<S
Ol7- 05 S Jo51 01 01]085 43 RCL
018 93 ., |o52 7?1 Sprjosse 092 09
019 02 2 053 00 00)087 42 570
020 04 4 054 35 @£5|088 03 03
g21 95 = (055 7¢ GE|D8% 36 PGN

022 59 INT|oS6e 00 00]J0%0 20 20
023 42 STO|os7 &3 663|091 71 SER
024 09 09058 &% OP |0%2 00 0O
D25, 1 11059 31 §1]|p93 &6 B85
026 42 STO 06D 71 SBR]|O94 75 -

027 01 0D1]06f 00 00J09S 43 RCL
028 42 STO 062 85 85|096 05 05
029 D2 02 |pé63 32 XIT|097. 95 =

030 71 SER|oé4 50 IxI|j098 32 %IT
021 00 OQ00joeS 285 + |099 00 O

032 85 85066 01 1 |100 32 RTM
032 77 GEloe? 85 +

JULY/AUGUST 1981

To run the program, enter the date in the MMDD.YYYY for-
mat of ML-20 and press A. Enter the number of days to the
target date (use a negative number for a target date before
the entered date) and press C. The target date will be
displayed. (Note: The Master Library module is required.)

Once the program was keyed in, the next step was to
TEST THE ALGORITHM using “worst case” conditions. In
this situation, if any problems were to occur it would pro-
bably be when the target date landed on the first or last of a
month or year or around leap days. These cases were tested
and the program was found to perform satisfactorily.

The final step in this program development was to
ANALYZE THE LOGIC AND CODE FOR OPTIMIZA-
TION. In this case, since | had plenty of program space, ease
of use and execution speed were my prime objectives. | have
two suggestions on how to accomplish this phase. The first is
to put the program away and forget about it for a couple of
days, then reapproach the problem. Often gross inefficien-
cies can be detected this way. My second suggestion is to get
a second opinion on the program. Another person provides
a fresh vantage point from which to view the problem and
can sometimes offer suggestions for improvement. I did both
these things. In correspondence with PPX member Bill
Beebe, he helped me derive the factor of 365.24 (steps
015-020) instead of a previous factor of 365. This change
shortened the run time.

If you have been hesitant to take on a programming task
because you did not know where to start, application of
these seven principles should help you. But remember, no
worthwhile piece of software comes easily; it takes time and
brainstorming.

Letters
to the Editor

Do you have comments, compliments or (shudder) com-
plaints about PPX? We have always welcomed letters from
our membership, and therefore, we are providing space in
each newsletter to share your views on PPX with your fellow
members. Approximately 2-4 letters dealing with issues of
general interest will be featured in each issue. Letters will be
edited to fit available space.

Dear Editor:

Is there a way to increase data registers above 99 so that
there are, say, 112 or 250, or whatever individually accessi-
ble registers for more data storage in a program. Perhaps a
module could be used.

G.B. Stanton

Dear Mr. Stanton,

Your question is one that [am frequently asked. There is
no way to obtain data registers on the TI-59 above the alloted
99. The Solid State Software™ Modules are ROMs (Read
Only Memory) on which the codes are indelibly “written” on

JULY/AUGUST 1981

a silicon chip and as such, the information on a module can-

not be changed.
Editor

Dear Editor:

The piece on “Hard-Wired Functions”, Mar/Apr 1981,
drew my attention, particularly the Angle Conversion
routines on p. 9, which [related to a routine I had devised for
converting the difference between two dates into years and a
decimal fraction (see my PPX #198054). As I looked over
the Angle Conversion and Inverse steps, it appeared some
steps could be saved by rearranging the sequences.

303 53 ¢ [321 55 = |339 75 -
304 53 ¢ |322 06 6 340 22 INV
205 22 HIR|3232 o0 o |241 S99 INT
306 08 o08|324 85 + |342 65 «x
307 22 INv|325 82 HIR|343 93 .
308 59 INT|326 18 118|344 04 4
309 65 x |327 59 INT|345 54
210 01 1 |328 54) |346 65 ¥
311 00 o0 329 92 RTHl347 93 .
312 00 0 [330 53 ¢ |248 00 O
2t3 85 + |331 53 ¢ l349 01 1
314 22 INV|332 82 HIR|350 85 +
315 59 INT|233 02 023|351 82 HIR
316 55 <+ [334 22 INV|352 18 18
317 01 235 59 INT|353 5% INT
218 93 236 65 x |254 54
319 05 5 [337 06 6 |355 92 RTN
220 /\S4. > 1338, 00 ©

By use of a little gimmickry, namely an intermediate
special divisor 1.5 and .4 for the respective sequences, | was
able to reduce the number of steps from 77 to 53 steps. |
realize of course that my shortened steps are merely an
academic exercise, since the actual routines are “carved in
stone” or maybe “etched in silicon” in the innards of the
TI-58/59, not to be changed while these machines are in
production. Nevertheless, I feel it is instructive to show the
reduction in steps, as a short study in programming techni-
que. What follows is an explanation of the high-level
cerebration by which I laid hold on the idea of the in-
termediate factors of 1/1.5 and .4.

[was contemplating the second half, where in my example
47.2202 degrees is converted back to 47.131272
deg.min.sec. Here the decimal fraction .2202 is multiplied
by 60, giving 13.212, which must be brought to 13.1272,
thence to .131272, to be added to 47 for the answer.

I was “doodling” figures on the paper, and subtracted
13.1272 from 13.212, which gave .0848, when FLASH! I
saw that .0848 was .4 times .212. Just like that! But if the
simple relationship hadn'’t been almost self-evident, | doubt
that it would otherwise have had the wit to devise my final
routine. After seeing that .0848 = .4x.212, | turned to the
first half, where that same difference of .0848 had to be
related to .1272, a relationship which at that point wasn’t too
hard to determine must be 1/1.5.

All this with not a thought as to any formal statement of an
algebraic equation to express the algorithm. Later, by hind-

Page 9

sight, | derived the following formulas:

D.d DD + - + o
e 60 3600
MM SSX 25
=DD + —+ ——
60 9000
SS 1
MM 100 1.5
= DD + + :
60 60
SS
MM.ss+§
Dd = DD + —
60

And for the reverse process:

Adx60- . mx .4
100

DDMMSS = D +

where .d=decimal degree, and .m=decimal minute
generated by .d x 60.

Sincerely,

Ralph W. Snyder

Dear Mr. Snyder,

Your intermediate divisor idea is a good one. I hope other
members will be able to use it. Perhaps we should all “doo-
dle” more often.

from the
Analyost's Desk

¢ PPX member Clyde Durbin has discovered a new way of
calling subroutines from the keyboard. To illustrate this
method, consider the partial listing shown below.

Editor

000 21 RsS
goi 22 IHY
goz 0t i
003 43 RCL
pod 01 01
0as 92 PRT
goe 02 2
607 - D33
008 42 570

If these steps are in the program memory of the calculator
then pressing
SBR 1 SBR will call the subroutine at Lbl INV

SBR 2 SBR Step 143

SBR 3 SBR Lbl RCL

SBR 4 SBR Step 199

SBR 5 SBR Lbl Prt

SBR 6 SBR Step 203

SBR 7 SBR Step 342
Page 10

The explanation of this phenomenon is that the calculator in-
terprets the SBR N SBR (where N is a integer between 0 and
99 inclusive) as a special kind of subroutine call. N is limited
to 99 since pressing a third digit would constitute a normal
subroutine call. The SBR N SBR sequence causes the TI-59
to perform the last SBR command beginning execution at
step N which is interpreted as the address for the subroutine
call. If program step N contains a code between 10 and 99
(except codes 21, 26, 31, 41, 46, 51, or 56) the calculator
will perform a label search for the code at N. If the label is
found, program execution continues at the label location
and, if the subroutine is terminated by a RTN, execution will
be returned to step N + 1 when the subroutine is completed.
As with the ordinary subroutine call, if the label is not found
the program aborts and the display flashes. If step N is a code
from 0 to 9, steps N and N + 1 will be interpreted as an ab-
solute address and the program will branch accordingly if the
address is within the current partitioning of the calculator.
One possible use of this technique could be in calling up
different routines that are all stored on the same magnetic
card. Admittedly, the call requires three keystrokes, but
numerical tags for routines could come in quite handy. If, for
instance, you have a magnetic card with more than ten user
accessed routines this method of routine calling might be
easier to use than having to resort to subroutine calling with
common labels. This method also allows for 100 different
subroutine calls, but, of course, requires as many program
steps as the number of different calls required. Numerical
data can be entered before this type of subroutine call and it
will remain in the display register during the transfer.
Routines called by this method should probably be ter-
minated with a RST command (hence the R/S at step 000 of
the above listing) to clear the subroutine return register of the
return address (location N+1 or N+2 depending upon
whether the transfer was with a label or done with absolute
addressing) that was placed there by the subroutine call.
® In last issue’s Analyst Desk, a PPX member pointed out
that the INV log function does not produce “exact” answers.
PPX member Charlie Wiliamson points out that the se-
quence EE INV EE will truncate the guard digits so that what
is shown in the display is all that is in the display register.

"o N

P s

This column presents some of the new PPX programs
which have been recently accepted. The abstracts here are
from programs that the Analysts thought would be of special
interest to members. You can purchase these programs at a
cost of $4.00 each. Send your order to: Texas Instruments:
C/0 PPX Department: P.O. Box 109, Lubbock, Texas
79408. Include an additional $2.00 to cover postage and

handling.
If you have a need for a specific program, send a note to

PPX. There is a chance that the program may have already
\been written. If it has, we will put the abstract in the next)

JULY/AUGUST 1981

e

issue of the Exchange. Requests for programs not yet written
will be placed in the “Programming Corner” column.

158002H Payback Time With Inflation

An earnings will increase over a period to time due to infla-
tion yet it decreases due to the interest rate. Given this data,
this program calculates the breakeven or payback period of
an investment due to inflation and interest.

George F. Polan, Providence Rl

181 Steps

188042H Searching for Call Option Spreads
Program provides a data entry routine for entering a series of
option prices, after which it looks at 21 buy and sell combina-
tions to determine if the profit/investment ratio meets a
prescribed threshhold. If so, program prints maximum profit
and investment for each combination with brokers commis-
sions considered. The program treats a price spread where
you are bullish on the stock.

Robert S. McGihon, Alexandria, VA

455 Steps, PC-100A

188043H Portfolio Values and Breakdown

On a given date when prices or value of all components of
the portfolio are available, this program calculates the value
of each component, the value of the portfolio, and the
percentage of the portfolio in each of 4 categories.

John E. Binns, Stuart, FL

406 Steps

228066H Maniel-Haenszel Test

Based on the hypergeometric distribution, this one-degree-
of-freedom procedure tests the null hypothesis that the rate
of occurance of an observed event is the same for two groups
after adjusting for some characteristic which is distributed in
both groups.

Jim Gibbons, CSW, Great Neck, NY

170 Steps, PC100-A, Mod 2

398238H Division

Divides 25 digits by 12 digits to return 30 digits. Program is
intended for practical cakulations rather than a demonstra-
tion of capability. Run times less than 90 seconds.
Laurance M. Leeds, Sun City, AR

198 Steps

398239H Triple Precision Arithmetic

Given two 36-digit floating-point numbers (A and B),
calculates: A +B, A —B, AxB, A/B. After an operation, the
result becomes the new A, and a new B can be entered for
chain calculations, A and B can be exchanged. Results are
rounded to 32 digits for display. For simple operations,
round-off error is less than 1 unit of the 34th digit.
Jacques Gelinas, Saint-Jean, Quebec, CA

376 Steps

418120H Kirchoff's Law of Enthalpy

This program finds the enthalpy change of a particular
material (gas, liquid, or solid) from its heat capacity, initial
and final temperature, and the reactions’s standard room
temperature constant. It uses Kirchoff’s law in finding the en-
\thalpy change. There are also a few energy and temperature

‘\

conversion subroutines that can help with the data inputs.
The standard room temperature constant of the reaction,
also called the heat of reaction, can be found by Hess’ Law
and is needed as an input for this program

Gregory C. Franz, St. Louis Park, MN

217 Steps

418121H Chemical Equation Balancer

Given the number of elements (or radicals which are not
broken up) the number of compounds involved, and the
subscripts of the elements, this program will compute the
coefficients for each compound. Ths maximum number of
elements and compounds is 8 and 9 respectively. Subscripts
may be as high as 99. Printer optional.

Kirt Gibble, Manheim, PA

356 Steps, Mod 1

468017H Directional Drilling Log Calculations
Calculates locations and depth data from a “Directional Well
Survey” Record for regions of interest between survey
points. Calculates the “Polar Coordinates” of the depth point
from the well site for better directional control. Results are
labeled and printed when used with PC-100C Printer.
Robert W. Pice, Gainesville, FL

361 Steps

578006H Hard Contact Lens Specifications

From measurements of corneal power and astigmatism (from
Keratometer readings, K1;K2), pupil and corneal diameter,
lid tension, the patients spectacle prescription and the vertex
distance at which the R, was obtained, this program will
compute the parameters necessary for the optician/op-
tometrist/ opthalmologist to order the initial set of hard, tri-
curve contact lenses.

Syivan J. Hoich, Wayland, MA

442 Steps

628199H Deflections Due To Distributed Loadings
This program accurately and quickly computes the deflection
of a simply supported beam due to a uniformly distributed
load. Fully prompted 1/0.

Jay Lamb, Midland, TX

700 Steps, PC100A

628200H Force Distribution (with Printer)

Given a maximum of 20 elements (Aress or Rigidities) in X
and, or Y direction, will compute the location of center of
rigidity of these elements as well as the location of and
magnitude of external forces applied on these elements and
determine the force distribution to each element and location
of each element and force from the center of rigidity.

Dan S. Hirschfeld, Niles, IL

896 Sieps, PC-100A, Mod 1

708006H Resonant Frequency

This program provides the resonant frequencies for any
dimension room. Lowest and highest possible frequencies,
based on program design and room dimensions, are
available.

Ross D. Litman, II, Ft. Wainwright, AK

115 Steps, Mod 1

=

JULY/AUGUST 1981

Page 11

PROGRANMMING
CORNER

This column is potentially a very powerful tool for you in
getting custom written programs from some of the more ad-
vanced PPX programmers. In order to take advantage of this
valuable opportunity, simply send us a description of your
programming needs along with your address.

Our author incentive program still applies to those who
write programs to fill these needs. When submitting such
programs please include a note stating that the program was
written to fill a Programming Corner request. Programs sub-
mitted to fill the following requests should be postmarked
before November 1, 1981 in order to be considered for the
author incentive program.

® A program that takes a number (integer plus decimal)
and packs it into a required set of registers to any required
precision (with space limitation). It then allows the operators
X, +, +, and — to be performed on the entire content as a
unit with the result stored in a different set of registers.

* A program that will store up to 100 stock (inventory)
code numbers with their corresponding quantity. Then it
should be able to search and find any requested stock code
number and allow the user to change or simply recall the
quantity of that item within a reasonable amount of time.

® A program to show the effects of taxes and inflation on
an investment while being able to alter the investment
amount, tax bracket, inflation assumption, and yield
assumption,

Membership Renewals

Is your membership about to expire? To ensure that you
will miss no newsletters, catalogs, or ordering privileges,

before the time to renew. Return the card to PPX with your
check or money order for $20.00. Be sure to include your
membership number on both your card and your check and
mail to: Texas Instruments PPX Department, P.O. Box 109,
Lubbock, TX 79408.

MEMBERSHIP NUMBER RENEWAL MONTH

909340-910093 September
920097-920478 September
927573-928026 September
910094-910895 October
920479-921594 October
928027-928279 October

TI-59 Programming Seminar

A Texas Instruments Programming Seminar may be com-
ing to your area. These seminars will provide beginning and
intermediate programming training on the TI-59. Tuition for
the two day class is $150.00 per person. This includes the in-
struction, workbook and luncheon for the two days. You
should supply your own TI-59. To register send your check
for $150.00 payable to Texas Instruments to:

TI-59 Seminar

Texas Instruments

P.O. Box 10508 MS 5820
Lubbock, Texas 79408

If you have further questions regarding the seminar call
Sherry Schroeder at 806-741-3277. The schedule for 1981
is;

SEMINAR DATES LOCATION
August 13-14 Minneapolis, MN
August 27-28 San Francisco, CA

check the renewal table to find out if your membership will September 10-11 Houston, TX
soon expire. (If your number is not included in the range of September 24-25 Denver, CO
the table, it is not time for you to renew). The next issues of October 8-9 Washington, DC
the Exchange will list additional renewal dates. October 22-23 Detroit, MI
A renewal card and reminder will be sent to each member November 5-6 Cincinnati, OH
(]
TEXAS INSTRUMENTS A
INCORPORATED U.S. POSTAGE
PPX ® P.O. Box 53 # Lubbock, Texas 79408 P{\\ID
U.S. CALCULATOR PRODUCTS DIVISION Permit No. |
Lubbock, Texas
ADDRESS CORRECTION REQUESTED
Page 12 #1034532-28 JULY/AUGUST 1981

	v4p01
	v4p02
	v4p03
	v4p04
	v4p05
	v4p06
	v4p07
	v4p08
	v4p09
	v4p10
	v4p11
	v4p12

