PP "

Exchanee

CVol. 6 Number 1 Copyright 1982

January/February 1989

PROGRANMMING
CORNER

(This column serves a dual purpose. It informs members of
what non-PPX software is currently available and also lists
descriptions of programs our members would like to see.)

TAX Time

As the dreaded date of April 15 approaches you may want
to consider using your TI-59 to aid in the tax calculation pro-
cess. Listed below is software available for Federal Income
Tax calculations from sources other than PPX.

Cal-Q-Tax

Cal-Q-Tax from Tax Management Inc. is a series of three

Solid State Software™ Modules designed to handle tax

computations.

@1981 Federal Income Tax Module contains individual in-
come tax, lump-sum distribution, tax tables and schedules,
Fiduciary income tax, and state and local schedules.

eEstate Tax Module includes family estate planning, marital
deduction, estate tax, gift tax, and interrelated deductions.

®Tax Preparation Module includes Schedule G, 10404,
Form 2210, Form 4726, Form 6251, earned income
credit, and Federal tax schedules and tables.

For further information contact:

Tax Management Inc.
1231 25th Street N.W.
Washington D.C. 20037

WG&L Tax Planner'™

Warren, Gorham and Lamont, Inc. has developed a tax

planning system using a Solid State Software Mmodule to

calculate and review tax alternatives.

*The income tax program chip calculates regular tax, max-
imum tax, income averaging, alternative minimum tax,
minimum tax, and table tax. Allows the user to test alter-
natives and change data at any time.

oThe estate and gift tax program chip calculates federal
estate tax, federal maximum death tax credit, federal gift
tax, maximum marital deduction, family estate planning,
and New York and California estate and gift taxes.

For further information contact:

Warren, Gorham and Lamont, Inc.

210 South Street

Boston, MA 02111

(800) 225-2363 (Outside Massachusetts)
(617) 423-2020 (Massachusetts residents)

continued on page 9

potpourr

1. In order to allow members to take advantage of the
wealth of TI-59 programming hints and other useful informa-
tion contained in the past issues of the PPX Exchange,
PPX is now offering these back issues for sale. To facilitate
the tapping of these resources the compiling of a topical in-
dex of these previous newsletters has been completed.

In a change from our previous policy, individual copies of
back issues will no longer be available, but the newsletters will
be offered in four volumes - one for each of the years
1978-1981. Each of these volumes is available for $7.00
each, and an index will be included with each volume. To
order a volume(s) of past newsletters specify the year(s)
desired on a PPX order form or plain white paper. Please in-
clude the standard $2.00 postage and handling charge for
each order plus applicable state tax. (Note: Due to the deple-
tion of original copies of some of the newsletters, we have
had to reprint some of these issues. These reprints are on
white paper but are of readable quality.) For you old timers
who have collected all the back issues, the aforementioned
index can be obtained by sending a self addressed, stamped
envelope to the Exchange editor.

2. When ordering PPX programs and accessories, please
be sure to include the order and the payment in the same
envelope. Due to the large volume of orders received, we
have been experiencing difficulty in matching orders and
payments that arrive separately. We appreciate your
cooperation in this area.

Root Finding:
A Natural Application

By Blake DeBerry and Jay Claborn

There are a multitude of techniques to find roots of equa-
tions, and each one has its advantages and disadvantages. It
is the aim of this article to examine a few of the more popular
methods and demonstrate their implementation on the
TI-59. Before we jump into these methods feet first, let's be
sure we all know what a root is. A root is defined as a value
which reduces an equation to an identity when substituted in
for one variable. In other words, it is a value of x that reduces
continued on page 6

Yet Another Look at
Alphanumeric Printing of
Numerics

By Jay Claborn

In the January/February and May/June 1981 issues of
the “Exchange” we examined several routines that convert a
number into its equivalent alphanumeric codes to allow for
printing. The advantage of using alphanumeric codes to print
a number over use of the PRT or OP 06 commands is that
the use of these codes allows a programmer the flexibility to
create a printer output format especially suited to his par-
ticular application. Judging from the correspondence I con-
tinue to receive on this topic, this technique has received
widespread usage. It has never been my intention to “beat a
dead dog” (if you will excuse the vulgarism), but as a result of
the continued interest in this subject, the techniques have
become even more refined. | will attempt to share these
refinements with you without replowing the ground
previously covered. If you are unfamiliar with the use of
numeric-to-alpha routines there is information on how to ob-
tain copies of past newsletters in the “Potpourri” column.

In general, a maximum of five digits per pass is entered in-
to a numeric-to-alpha subroutine to be translated into the
corresponding alphanumeric code of up to ten digits.
Subroutines that perform this function have been dubbed “5
digit converters”, even though they are capable of generating
the alpha codes for integers from 0 to 99999. | have further
classified these 5 digit converters by the format of their
generated alpha codes as routines which print with leading
zeroes and without leading zeroes. The formulation of these
distinctions may seem quite vagarious until one considers the
applications of numeric-to-alpha subroutines. Consider, for
instance, the application in which one wishes to generate two
columns of integers side-by-side in which the magnitudes of
the numbers may vary from one to eight digits. To ac-
complish this task the first column could be right hand
justified in print register 2 (OP 02) with as many as three
digits running over into print register 1. Similarily, the second
column would be right hand justified in print register 4 and
would run over into the right most three positions of print
register 3. A sample of the desired type of output might ap-
pear as shown below.

OP 010P 020P 030P 04
75P0314: : 23
: 888: 32’/}3 7924

Obviously, since we can only convert five digits at a time to
alphanumeric code, the numbers with more than five digits
will have to be broken into segments and then translated. By
dividing 7500314 in the sample output above by 100000,
taking the INV INT of the result, and multiplying by 100000,
we have extracted the first five digits (00314) for entry into a
5 digit converter. To extract the remaining digits all we have
to do is divide the original number by 100000 and apply the
INT function to the result. Now if we were to follow this pro-

Page 2

cedure employing a 5 digit converter that does not produce
leading zeroes the output would appear as follows.

75 314 23
888 327 7924

Because of the omitted zeroes, this attempt is rendered un-
satisfactory. We can get better results by using the same con-
verter for print registers 1 and 3 and a separate 5 digit con-
verter that provides leading zeroes to create the codes for
print registers 2 and 4. Doing this yields the following.

7500314 00023
00888 32707924

This is closer to the desired format but still no cigar. By using
a little logic we can obtain the desired output.

062 7FelLBL|o7ée 05 5 |68 w0 0O
Ge4 93 PET| 077 22 IWMM| 090 71 SEBE
085 56 < 07 28 LOG|oei &9 OF
cF 0S5 5 07 49 FED| 092 392 ETH
» zZ2 IM¥| 020 o0 000|033 Fé LEL
z g LOG| a1 00 O |04 928 ADY
3 82 32) 095 43 RCL
=2 IHY| 083 €7 86 . DY
S IWMT| 024 98 09y 71 SBE
42 5T0| 085 71 038 &2 HOF
oo 00| 026] bss 92 RTH

35 = | 087

€7 4 HEs

If LBL OP contains a 5 digit' converter with leading zeroes
and LBL NOP is a 5 digit converter without leading zeroes,
we are in business. When sending “7500314” into LBL
PRT, steps 063-082 result in a “75” in the display, “314” in
register 00, and a “0” in the t-register. Steps 083-084 test to
see if one or two print registers will be needed to print the
number and transfer to LBL ADV if only one print register is
required. In our case “75” does not equal “0” therefore two
print registers will be required, and the transfer is not made.
Steps 085-087 fetch the alpha codes for the most significant
three (or less) digits of the number from subroutine NOP and
put them in the t-register. Steps 088-092 use subroutine OP
to generate the alpha codes for the five least significant digits
leaving them in the display register. Upon return from
subroutine PRT all that has to be done to load the proper
print registers is to perform OP 02 x—t OP 01.

Now that the need for different types of 5 digit converters
has been established, let us turn our attention to the actual 5
digit converter routines. In trying to create an “optimum” 5
digit converter, the variable that is usually optimized is the
routine speed. Throughout this exploration of different con-
version routines the assumption will be made that run time is
indeed the quantity to be minimized. The fastest 5 digit con-
verter that does not produce leading zeroes was submitted by
Dick Collins. Collins’s routine is a slight revision of Bill
Beebe's program that appeared in the May/June 1981
issue. In a test consisting of printing 5 digit numbers ten
times, Collins's version had a run time of 66.6 seconds ver-
sus 72.9 for the Beebe version. The speed of Collins's
routine is highly dependent on its location at the head of a

January/February 1982

program due to the use of label addressing.(Yes! Label ad-
dressing can be faster than absolute addressing if the label is
located early in the program.) Collins’s subroutine, ap-
propriately labeled NOP to be consistent with our previous
notation, is shown below.

s LBL J0Oi4 22 g1 1

12 NOP JB1S5 5% oo 0

%17 fGole ¥ 22 HIR

i 557 AT 483 48

* HIR | 018 24 85 .=

g2 Jois 85 ¥7 GE

3T | 020 93 7E& BE

LEL | 021 01 65 %

GE| b22 85 22 HIE

= 023 59 5 -1 G

i gz24 55 33 K2

g iS85 a5 =

= NE26 o 5 92 RTH
CERRE v 2

Dick Collins also created the fastest 5 digit converter with
leading zeroes. Again, the algorithm is a variation of Bill
Beebe’s method. In the same test mentioned previously, this
routine took 59.5 seconds. The clever use of label address-
ing by placing it at the front of program memory again means
this routine will run slower if it is relocated further back in the
program memory. This routine which starts at LBL OP is
listed below.

oog 93 . £%2 OF
0oi gy il =t
ooz 25 + i0 E*®
coa 53 INT G T
oo4 55 (& 020) 10E°
CosS 25 = g31) 46 E*
o6 £ T Lty aaz e85 X
ooy IHY g5, = G323 105 B
0028 59 INT & | et 034 | B2 THY
ans 75 - oo 0 035 28 LOG
BEpS 53 a5 = 036 33 Ke
o1l 24 GE gz RTH] 037 55 =
gi2 85 * 76 LBL] D38 92 RTH

To achieve the two column printing that was shown
earlier, it would appear that it will require 117 steps (37 for
LBL PRT, 42 for LBL NOP, and 39 for LBL OP). As many
of you have probably already noted, labels NOP and OP
have many steps in common so that the two routines can be
integrated to occupy only 63 steps together. This combining
process does, however, slightly impede the execution of
LBL NOP.

76 LBL] 021 6 1 85 =
ig E® =] 1 92 RTN
55 =+ 12 RTHlOd44 76 LBL
0% | 76 LBL| 045 &9 OF
ap o £2 MOF|O4e 10 E°
o S a2 XrTlagy ~9h 3
g 1 o1 1 Jo4s 10 EC
22 1IHY gz HIR]JO43 95 =
53 INT gg ag]oso 10 E?
¥ e 2 wiTesL 2% =
o 0 ProfaseE 18 ET
24 CE 82 HIR|UO53 99 =
g5 + 4% 48054 10 E
a3 . gn = 085 95 =
1 U | 77 GE]DS56 65 ¥
a5+ no oolos? 05 5
59 INT A1 3llos58 =22 InY
S5 = 65 x lose 28 LOG
gs 5 gz HIR|OED 33 =
54 2 {8 181061 99 =
5h = 33 ¥ | 062 322 RTH

January/February 1982

A CHALLENGE

For those of you who have found this information on the
printing of numerics remedial and for those of you that just
enjoy a programming challenge (judging from the response
to the last programming contest there are quite a few in this
category), | have devised a useful application of numeric
printing for you to tackle. The task is to create a program that
will list all thirteen digits of the contents of data registers 00
through 89 (leaving the first bank of memory for the program
and any working registers needed) in the format shown
below.

(|
|

L s

The register number is printed on the left followed by the thir-
teen digit mantissa and the power of ten by which it is
multiplied. As shown, the program should be able to list all
possible register contents in scientific format including both
positive and negative numbers. In order to aid in the judging
process all entries must meet the following criteria.

1) The program should be able to list the contents of re-
gisters 0-89 leaving the contents of these registers in-
tact.

2) The program should be initiated by entering the
register number of the first register to be listed and
pressing A.

3) The program should run as fast as possible. Program
speed will be the only judging criterion assuming the
other requirements are met. (All submissions will be
timed on the same TI-59/PC-100A combination to
avoid run time differences due to different machines.)
Since this is a contest of programming skill and techni-
que, no fast mode programs will be considered.

4) All programs should be submitted by March 31, 1982
with a PC-100 tape listing, pre-recorded magnetic card
(recorded in power-up partition), and an estimate of
the time required to list the contents of ten registers.
Regular PPX submission forms need not be used, and
submitted magnetic cards will not be returned.

The fastest program will be featured in the May/June issue,
and the winning author will receive two magnetic card cases
with cards. In order to give you a time to beat, | have already
written such a program. My program turns in a sluggish time
of 3 minutes and 41 seconds for ten registers; surely you can
beat that!

The PPX Exchange is published bimonthly and is the only
newsletter published by Texas Instruments for TI-59 owners.
Members are invited to contribute articles and items of
general interest to other TI-59 users. Authors of accepted
feature articles for the newsletter will receive their choice of
either a one year complimentary PPX membership or a Solid
State Software'™ module. Please double-space and
type all submissions, and forward them to:

Texas Instruments, PPX
P.O. Box 53

Lubbock, Texas 79408
Atin: PPX Exchange Editor

Page 3

from the
HAnalyost's Desk

eSince the publication of Robert Wyer's “Clearing Your
Memory” in the March/April 1981 PPX Exchange a couple
of other techniques to clear blocks of data registers have
surfaced. The first routine which was contributed by PPX
member Marcelo Falcon is an excellent application of the
Master Library module. He relates that all that is necessary
to clear the block of registers from 1 to N (where N is any
register number greater than zero allowed within the parti-
tioning) is to perform the sequence: N Pgm 01 SBR 012.
To understand how this routine works one can download
ML-01 and examine program steps 012 through 021.

o (] 0
D20 1515
021 92 RTM

These steps are actually part of subroutine CLR which is used
to initialize the calculator for statistics and linear regression.
The advantage of this routine is that since it is a module
library subroutine, it runs faster than its main memory
counterpart.

A second routine allows for the clearing of an arbitrary,
user-defined block of data registers. This routine can clear
any block of registers within the partition as long as register 0
is not included; register 0 and the t-register are used by the
routine. To use the routine place the number of the lowest
register to be cleared in the t-register and the highest register
to be cleared in the display and call SBR CLR.

TE e
| 25 ang
f 3z aio
i od a1l
{ oo afiz2
{ 7z 013
{ o0 014
ggy &9

#Marcelo Falcon shares the following concerning the access-
ing of the hierarchy registers from the keyboard. When
developing a program, especially one that makes use of the
HIR instruction, one may want to check the contents of a
hierarchy register. To accomplish this simply enter the
following sequence anywhere in program memory: LBL
GTO HIR (be sure there is no other LBL GTO in the pro-
gram). Now, to execute a HIR instruction from the
keyboard, press GTO GTO SST XY (where XY is the
desired two digit hierarchy function code).

*PPX member Charles Gaylord has informed us of some
precise tests to assure that an [NV Write command is placed
in a “safe” location. As mentioned in the article “Multiple
Card Usage” (September/October 1981), the sequence “N
INV Write GTO nnn” {or “N INV Write GTO n”) must be
carefully positioned within a program if the user intends to
read new code into the bank through which the program is
currently executing. One can successfully read new code
into the current bank and go to any available location if the

Page 4

“Write” command is positioned according to one of the

following rules.

1) If the sequence is “N INV Write GTO nnn™, posi-
tion the command “Write” on a step that, when divided
by 8, yields a decimal portion from .0 to .5, inclusive.

2) If the sequence is “N INV Write GTO n” or “N INV
Write GTO IND xx”, position the command “Write” on
a step that, when divided by 8, yields a decimal portion
from .9 to .625, inclusive.

These rules assure you that your intended address is stored

safely in the processing buffer before you overwrite the bank

in which the program is currently running. There is one ex-
ception; “Write” cannot be positioned on step 000 because
that would split the “INV Write” instruction.

*An extension to the “Inverse Days Between Dates” pro-
gram which appeared in the July/August 1981 issue has
been recommended by Henk Leidekker. He suggests the
adding of a printing feature which will print not only the date
but also the date of the week. Making use of the day of the
week feature of Master Library Program 20, this extension
can be accomplished. Program and data register listings are
shown below. The input sequence remains unchanged.
(Enter the starting date in MMDD.YYYY format and press
A. Then enter the number of days from the starting date
and press C.)

S Bgs. 92 892
85 -3 087 &9 0OF
Ue - 61088 31 31
g5 -5 089 7i.SBR
S fe 020 01 0t
e B 15 o R
a4 4 0932 s Ixl
95 = 09z g5 +
SYHNT 054 - Of 4
»e ST 1695 285 +
B9 =031 096 43 RCL
01 4 642 NN = % P £ %
4z STOJ 098 £S5 x
T 1 1jo9s o1 i
g 0a 32 ¥ HE 0
a1 1] (515 i |
ag: g 7% 25 +
53 OF B 43 RCL
i7 i7 i3 as. 09
73 RC* Vr 5 BE =
0t Q& oo 106 04 4
&9 0OF Z0 107 N
04 04 6° igs oG
43 RCL 3 109 9 =
oo 0o 7 i H :
&2 0OP o1 1 22 BTH
gs 06 i: 1 43 RCL
92 RTH 2E 1 09 09
7& LEL S50 I i 42 STO
¥I - H 09 = i g3 83
0 E*" |5 1 6 FPGH
g g9 2 1 20 20
89 1 71 SBR
g a1 - % i oo oo
2 TH 8985 = 86 3%
EL 89 - INT 1 i
& 4z ST0 |1 43
¥ 81 01} 05
2 REL Ti BER 112 5
a { G4 01 01)¢ 4
a a5 = 18- 13012 00
41 4z 570 £ 77 BEJ127 92 RTH
04z 05 0S jo8s (00 00

January/February 1982

Register

*PPX member Mark Miller has recommended a shortcut for
keying Prt and Adv into programs. When the TI-59 is at-
tached to the print cradle, Prt and Adv may be entered in
the LRN mode by simply pressing these keys on the print
cradle. This procedure eliminates the need to press the 2nd
key on the TI-59 and is helpful when entering several Adv's
at a time.

*Notice to members who have purchased the program
“Othello” (PPX #918229). This program has been revised.
To receive revision B, please return your original copy to
PPX.

*In many program submissions we are encountering the in-
structions to use INV Write from the keyboard to manually
read a magnetic card. We would like to caution all users in
the use of this instruction from the keyboard. The TI-59
recognizes N INV Write as a valid entry only when used as a
program instruction. The use of this key sequence as a
means of initially reading a magnetic card can possibly alter

or erase the magnetic card. With a zero or the bank number
in the display the calculator automatically reads a card plac-
ed in the read/write slot provided the partitioning of the
TI-59 is the same as the recorded program.

Alpha Register Lister

By Bill Beebe

This program can be very useful in debugging and
documenting programs which use prestored alphanumeric
data. Using the PC-100A/C this program lists the number
stored in the data register, the register number, and the alpha
equivalent of the register contents all on a single line for any
block of registers from 1 to 89. It will not list any registers
which contain zero. (Note: Since this program is designed to
list alphanumeric code, it does not properly print the numeric
part of numbers greater than 9999999999 or negative
numbers, nor does it print the fractional part of a number.)
To use the program simply enter the lowest (LL) and highest
(HH) registers to be listed in the LL..HH format and press A.
The maximum run time for each register is about 18
seconds.

SAMPLE OUTPUT
As an example of the use of this program, enter the follow-
ing alpha codes in their respective registers.

Alpha Code Register
32231700 01
3724200612 03
2235171337 04
2141310073 05

Now enter 1.10 in the display and press A. The program
output is shown at the top of the next column.

January/February 1982

(e
.1

o
M

e i B R
e [T 1

2 i

-

iy A
{0

o B o

$ = T

W a0 N

R
7
e

W
=

|

e Eomt

2 70
=,
n o
i

y C

e

e LT

i B = 5.
P e o TR T o i ol

A AR
e
(]
i s
n

= o
N 1

i

+

(RUR SRR O | O) B

(O | I

TR T O L R S R
T
e
N

O S e B e O M e R O I e T R IRt I O v W B 0

o

S i o o M 0
— T
e o N s Moot R
T (£ a0

u

P b b 5
L A

0 ks D0 T
Ll il I RSN TV R SR R B i wml TR Y KK B

RTH
LEL
=1

P x|

ERAHKT

IHSERT CRRID
]. et

ADDRESS CHANGES

In order to ensure uninterrupted service, please submit
address changes to PPX at least six weeks prior to the
effective date of the change. Send your name, mem-
bership number, old and new addresses to:

PPX
P.O. Box 53
Lubbock, TX 79408

Page 5

Root Finding (continued from page 1)

some function of x which we will call f(x) so that f(x) = 0.
Many equations have more than one root, polynomials be-
inga good example. In general, these roots can be either real
or imaginary. For the sake of simplicity, we will only address
the subject of finding real roots of a real function.

Because of the involvement or impossibility of algebraically
solving for the roots of many questions, numerical methods
have been developed which allow us to take advantage of
the number crunching and iterative capabilities of computing
machines such as the TI-59. As is indicated in its definition,
an iterative process (which all numerical root finding techni-
ques are) involves the replication of a cycle of operations to
(hopefully) produce results which approximate the desired
result closer and closer. Since such techniques do not solve
for the root explicitly, a condition must be defined which,
when satisfied, will indicate that the iterative process has con-
verged “close enough” to the root for the process to be
halted. Such criteria usually require the user to input a small,
positive number called epsilon (e). One method of testing for
convergence (Type 1) is to check the magnitude of the
change in the independent variable from one iteration to the
next, i.e. a function of x is given by f(x), and we wish to find
a root such that f(x) = 0. If txn - 1| < € (where x|
denotes the value of x that approximates the root after the
nth iteration), then the value of x_ is considered to be “close
enough” to the root to be called a root. A second method of
testing for convergence (Type 2) is to test after each iteration
to see if f(x) <e. Both of these commonly used methods have
their shortcomings. With the first method, it is possible that
|, — %, _1| may be very small at a location that is not
within e of the root. Such a situation might occur when the
function is shaped as shown in figure 1.

f(x)

Actual Location of Root

-
-

ol {

e

x =
n-1"n

Figure 1

Example of Failure of Type 1
Convergence Testing

The second criterion can fail when the function is very flat in
the region surrounding the root. In such a case, f(x) is very
small, but x can be further than ¢ away from the root. If there
is a great need to minimize these errors, we recommend a
third convergence criterion (Type 3); [Xn = Hp= 1] +
flx, 1}2] /2 < ¢. This criterion tests the length of the seg-
ment shown in figure 2.

Now that we have determined how to tell when a root has
been found, let’s examine five of the most commonly used
iteration technigques..

Page 6

Af(x)

o —— - ——

><
)
i
15
:!x.
Y
"

Figure 2

Type 3
Convergence Testing

Simple Iteration

One of the easiest methods to implement is that of simple
iteration. If the function f(x) = O can be rearranged such that
x = glx}, then the iterative process x_ . 1 = glx,) wil
sometimes vield a root. For this procedure to be successful,
the absolute value of the first derivative of g(x) with respect to
x must be less than one when evaluated at a root. Because of
the form of this process, the most commonly used test of
convergence is of the first type discussed above. The
flowchart shown in figure 3 illustrates this process.

- n+l

r
Stop

F1Gure 3
FLOWCHART FOR SIMPLE ITERATION

January/February 1982

As an example consider the cubic equation x3 + 5x2 — 64x A £(%)
— 140 = 0 which has roots at 7, -2, and -10. Rearranging,
we can write the equation as x = 140/(x“ + 5x — 64)
which is of the form x = g(x).

This method is easily coded on the TI-59. In an effort to
make the routine as general as possible we will use LBL A’ to
calculate g(x). While LBL A’ will have to be changed for
every different function, the rest of the program can remain

the same.
To use the program (listed in figure 4), enter an initial
guess for the value of the root and press A. Enter the value of 3
e and press E (if this step is not performed a default value of
.01 will be used for ¢€). Press C to start the calculations. The
calculated value for the root will be displayed. With g(x)
defined as it is, the program will find the root at -2 since the H
absolute value of the derivative of g(x) is greater than 1 at x Figure 5
=-10andx = 7. I1lustration of Bisection
LEL 76 LBL Method
"_I"D _],r 2; L Although bisection is a “crude” method, it will always find
55 =04 the root if it is supplied with two endpoints as described
‘3 : above. If one wishes to find more than just one root in an in-
a5 5 terval, The complexity of the algorithm is greatly increased.
ol B9 % Since we will take an indepth look at finding more than one
|41 HLI“ root in our consideration of the next method, we will leave it
e to the interested reader to download Master Library Program
:‘: :r 08 for an example of the implementation of bisection to find
g5 = more than one root.
35 ey Regula Falsi (false-position)
ri'f : The method of false position is one step up the ladder of
04 4 sophistication in root finding from the method of bisection.
o0 0 This method is often used in preference to bisection because
oD e it utilizes the same information as bisection but usually
SRR generates a closer approximation of the root. As shown in
figure 6, the approximation of the root (call it xy) is the point
where the line defined as the two points (x , f(x[}) and (xR,
f(xp)) crosses the x-axis. Once the approximation XN has

been found by
Figure 4 xy = X+ (kg — xp) flxp) / lfxp) = flxg)]
Listing for Simple

Rersilon Prograin the procedure for determining which side of xy the actual

root lies is the same as that for bisection.
Bisection A

Bisection is one of the easiest methods to visualize; f(x)
however, due its “brute force” nature, it tends to require
more iterations to converge than the more elegant methods.
In order to visualize how this technique works, consider the
function in figure 5 which has a single real root bounded by
two points, x; and xg, on the x-axis. The points x and xg
must be such that f{xL) « f(xp) < 0, or, in words, the func-
tion must be on opposite sides of the x-axis at the interval
boundaries, x; and xg. To find the root, we first bisect the
interval by calculating its midpoint x . = (x| +xg)/2. Next,
we compute the product f{xm} * f(xR}. If this product is
negative then the root is between x and xg, and we letx | L
become our new left end bound {xL}. However, if the pro-
duct is positive then the root is between x; and x, and we

B

w
A |

letx become our new right end bound. This process is con- Figure 6

tinued until the root has been found as accurately as desired.

Since the maximum error in each x _is //2(x; —xg), the pro- I1lustration of Regula Fal si
cess is usually considered convergent when xp —x; < 2. Method

January/February 1982 Page 7

The flow chart shown in figure 7 illustrates the logic re-
quired to apply the method of false-position to find all the
roots in a specified interval. The user must supply the size of
the subinterval to be used. This subinterval size (denoted by
N in the flow chart) should be chosen small enough that only
one root will fall in each subinterval. A rough plot of the func-
tion will usually help in determining the size of the subinterval
to be used. As shown in the flow chart, convergence testing
of the third type has been employed.

Set Flag
e, BT
TED\II + RN
< D _d&(n R P
' re Py T
N LT f(xm.} “"m-’
Display
*y
s L

Ficure 7
RecuLa FaLsi MetHop

A TI-59 keycode listing of the logic represented by the
false-position flow chart is given in figure 8. The data register
assignments are as shown.

Register Contents
01 XL
02 KR
03 N
04 E
05 XLT
06 xRT
07 KN

Page 8

08 [xN — Temp) 2

09 f(x;)
10 f {xll;'g)
31 f [xNJ
12 and above Available for
use by sub-
routine A’

Subroutine A’ is reserved for evaluation of the function of in-
terest. The sample cubic previously considered is coded in
subroutine A’ of figure 8. To find the three roots of the sam-
ple problem (-10, -2, and 7) enter a left bound (say -20) and
press A. Enter a right bound (10) and press B. Select a
suitable subinterval size (7) and press C. Enter a small
positive number for € and press E (if a value for € is not
entered, a default value of 0.01 is assigned). The root at -10
will be found first and displayed. Press R/S to continue the
program. After all roots in the interval have been displayed,
the display will flash.

TE LBL]O4S Oe [E]=
11 R 048 i 43
2 047 4z 1
1 05 42
7 54 i0
6 85 a1
B 43 oo
12 05 78
00 = 43
ot K 48 o7
] z 11 07 4z
o011 04 54 35 05
g1z a1 26 43
13 76 o i
14 | 12 42 4z
015 42 ¢ & o9
Bie ‘02 42 g1
017 2 (K[oo
018 (7& ig 7
019 15 4z
BEG 42 10 5
021 04 43 56
gzz 21 0s 11 157
i 76 i6 9 § 158
02 13 42 £ k3 152
025 2 03 03p1d 160
DBZE B3 .0 65 # |1t 161 &
0 SR 43 RCLJ 11 162 L
0 43 R 18 10]11 162 CE
0 ov s 85 = J1iis 164 Kz
] 91 R/S 4 120 165 *
K} 76 LEL|OoFe ¥7 GE[i121 166 o]
a 14 D |Oo77 14 D 122 167 & b
0 43 RCLIO78 43 RCL| 123 168 43 RCL
0 011079 09 09]124 65 X Jie9 12 12
03z STO|080 S5 < |125 43 RCLl170 75 -
0z 051081 S3 ¢ |12e 09 02171 06 &
03 + |082 24 CE 127 95 = |172 04 4
02 RCL1O83 75 = 1128 23 CP |173 S4
039 C31084 423 RCL]129 77 GCGElizd 75 -
040 85 = Jogs 10 10}130 oI Ofizs o1 1
041 42 3TO0|0ce 5S4 131 43 43176 04 4
042 01 0ti]og? &S 132 3 RCLY17? OO ©
043 2.370] 0688 53 ;i R g 1 s T
044 08 06] 089 43 ECL| 134 42 STOy179 92 RTN
Figure 8

Listing of Regula
Falsi Program

Newton’s Method

Sir Isaac Newton recommended that the line used in the
method of false position be replaced by a line tangent to the
function at the current approximation of the root. This
method of root finding does not require that the root be
bounded, only that an initial approximation in the vicinity of
the root be supplied.

January/February 1982

A f(x) this article to fully delve into the application of synthetic divi-
sion; however, reference 3 listed at the end of this article
contains an excellent treatment of the subject.

(continued on page 10)
I
| Input
| s
| |
% S 4
0 1 2
N0
h 4
Figure 9 £ x)
2 : = IR e D A, S
ITlustration of Newton's N
h
Me thod

In order to find the location of the new approximation
(xN + 1) the tangent line is defined by the point {xN, f(xN]}
and the slope of the line tangent to the function at that point.
This slope is known in differential calculus as the first
derivative of the function at x; and is denoted by f'(x)). Us-
ing these notations the next approximation of the root is
given by

XN+l = *N ~ f[xN)/i’[xN}.
This process is depicted in the flow chart of figure 10. Not
only does Newton's method tend to converge in fewer itera-
tions than false position, it can also find a root where the
function does not cross the x-axis but is tangent to the x-axis.
Without large modifications in the logic, Newton's method
will only find one root for each initial guess. To find all the
roots of a polynomial by Newton's method, synthetic division
can be used to find the derivative and to reduce the
polynomial once a root is located. It is beyond the scope of

Display

N

‘ Stop }

Ficure 10
Newton's METHOD

Programming Corner (continued from page 1)

NEW BOOK ANNOUNCEMENT
Using Programmable Calculators for Business

C. Louis Hohenstein
Designed to help users be able to immediately put to use the
power of the TI-59 to solve numerous business problems.
Provides fully working programs for payroll calculation,
depreciation, tax computations, invoice extensions,
forecasting, real rate of return calculations and a host of
other business applications.

Available from: Delta Business Publications

P.O. Drawer 166

1175 Peachtree St. NE

Atlanta, GA 30361

PROGRAMS WANTED

In order to help PPX members obtain the software they
need, we publish program requests. Members who respond
to these requests by submitting a PPX program are rewarded
with special incentives. All such submissions should be on
standard PPX submission forms. The author of the program
found to be most suitable to fill each request will receive a

January/February 1982

Solid State Software™ module of their choice. Runners-up
will receive a Specialty Pakette. When submitting a program
to fill a “Programming Corner” request, please attach a note
stating which request the submission is intended to fill.

submissions to fill these requests should be postmarked no

later than April 30, 1982.
*A program for psychometric analysis for air conditioning

eA program to compute the Y function for large numbers

®A program to analyze and forecast time series data which

*A program to join two different sizes of pipe at various

The program requests for this issue are listed below. All

given relative humidity, dry bulb temperature, and eleva-
tion above sea level. Output required: water-air ratio,
specific volume, percent saturation, and enthalpy of the
mixture.

with greater than 10 digit arguments.

can contain horizontal, seasonal, cyclical, and trend com-
ponents using the method of Adaptive filtering.

angles to form a Y branch. The input should be only the
outside diameters of the two pipes and the angle joining
them. Output should be the coordinates to be plotted to
make a pattern to mark the cuts on the pipes.

Page 9

In order to use Newton's method on the TI-59 one must
be able to write a subroutine which can evaluate the function
and its derivative at any point. This task has been done in
subroutine A’ of figure 11 for an arbitrary order polynomial.
The section of the program that performs the interative
Newton's method is contained in steps 028-054. To use the
program enter the order (m) of the polynomial and press A.
Enter the coefficient of x™ and press R/S. Enter the coeffi-
cient of xm — 1 and press R/S. Continue this process until all
the coefficients have been entered (missing terms should be
entered as having zero coefficients). The program contains
an entry correction routine that allows the correction of a
misentered coefficient. To correct an entry, enter the power
of x of the misentered coefficient and press B, then enter the
correct coefficient and press R/S. To complete the data en-
try process, enter a small positive number for € and press E.
Entering a first approximation of the root and pressing D will
start the program. The keystrokes necessary to find the root
at -10 in our sample cubic equation are shown below.

Enter Press
3 A
1 R/S
5) R/S
64 +/— R/S
140 +/ - R/S
00001 E
20 +/ - D
7h LBl 7 43 ECL
: i B 58 459
43 ECL 4E ST0
56 5% o8 58
< 34 +7- 5 EC%
£] (u] B = 38 &E
o1 1 43 FLL 440 SH
6 LBL L= e e 56 56
15 E a5 = 4% RCL
32 wiET 44 SUM 52 &7
4 Mot {o ¥ G 49 FRD
55 58 33 e 56 S8
76 LBL * 43 PRI
1E 0B 2Cl s 55
42 £70 oh 43 RCL
58 58 2 5 S8 58
91" R4S = 78 eb =
72 * T¥ oFe 73
28 a8 GE |G80 S8
gL 1 oo |og1 95
22 IHY 32 |02 a4
44 SUM 43 RCL |1 55
52 98 57 657 | a7
43 RCL a1 RsS5 | 58
58 S5z |1 & LBL |¢ it
i -GTO | ie At l EE
go 00 Jos? 00 o i 4z
16 16 058 42 =TO [i3
76 LBL J0S9 55 55 | 44
id4 T oe0 42 570 5
42" 8T0 JCel 56 56 092 92
Figure 11

General Order Polynomial
Root Finder

Secant Method

The secant method is a modification of Newton’s method
in which the derivative has been replaced by a difference ex-
pression. This modification is helpful when the function is
laborious to differentiate since the derivative does not have to
be programmed. In order to allow the initial calculation of the

Page 10

difference expression, it is necessary to supply two different
initial guesses, X0 and x _ 15 of the root. Using this method
the expression for the new root approximation is

The actual iterative process is shown in figure 12, and a
TI-59 listing with the subroutine A’ programmed to evaluate
our sample cubic equation is shown in figure 13. The data
register assignments for the program are listed below.

Register Contents
00 €
01 X
02 X 1\11
03 dN +1
05 f(xN =1
06 flxpg)
07 and Available
above for sub-
routine
A

To use the program, enter x and press A, enter x _ 1 and
press B. Enter e and press E. Press D to start program execu-
tion, The keystrokes required to find the root of our sample
cubic at x = 7 are shown below.

Enter Press
20 A
15 B
.0001 E
D
ago e LEBLJO33 Ve LBLOQ&e 00 QO
B~ \B il P81t iy |07 22 IRY
gog/ 4z ST 035 »43 ‘RCL 068 77 GE
g0 Gi1 0ijo36 01 0Oljlose® 00 QO
i STeRpsshay st a?e . 95 35
003 76 LBLjD32 42 STO| 071 3 RCL
poé 12z B 039 06 06072 0f 01
007 42 sTOlo40 &5 ® | 07 31 RsS
ope2 02 oz|od4i 42 RCL) O & LBL
oos ie A* Jodz o2 oz|o ié A"
010 42 5TR)E43 55 = @ 42 STO
it ~G5 Boled4d. S8 £ B g
012 43 RCL|D45 43 RCL | 07 55 X
012 01 01]j0de 05 0S| O 82 £
oitd 75 = 04T 75 0 - 1 4 CE
0is 42 RECL |04= 2 ECL | a8 33 Re
Qie 0Oz O0Oz|04% 06 08|02 85 +
2i7 =25 = |0O50 28R 083 0% 5
2 =42 STEEORE A0S 051 034 &0 X%
(i g3)Bhe 95 = 025 43 RCL
21 T 053 : gge 12 12
oo o |oTd Floge ¥5 -
Bilied OHEBG = 58 0E &
42 cTOlose @ ofjogs 04 4
o0 0o o057 23 ne 90 54 3
43 RCL jos8 8% + 9% L EE T
Oz Dz o538 42 ReL | o922 o1 i
91 R-S|06B -85 06 a3z 04 4
7& LEL J061 33 &= 4 OO0 O
33 Sl (R TS sl i Lt o S ST
42 =570 |0 24 TE 32 RTH
oo oo o FeHIT
291 Ers Jle 43 ECL
Figure 13
Listing of Secant
Method

January/February 1982

do X

=)
E(XN' dn

d el [R
N+1 ~f
ffXN) R(xN_L)

B 0 w1 © Xty

Display

il

‘ Stop l

Freure 12
SECANT METHOD

Conclusions

In this article we have examined five different techniques
of root finding and given examples of their application on the
TI-59. No attempt has been made to single out any method
as being superior to another although predictions as to the
relative number of iterations required by each method have
been made. The real test of a root finder, though, is not how
few iterations it takes but how fast it finds the root. Since the
speed of these routines is dependent on the time required to
evaluate the function, which method is the fastest will de-
pend on the function. It could turn out that even though
Newton’s method may take the fewest iterations to converge,
this method could be the slowest of all because of the extra
time required to calculate the derivative. Since speed is the
major concern, one would usually use one of the root finding
programs contained in the Solid State Software ™ libraries
because module programs execute a faster rate than their
main memory counterparts, The Master Library contains a
bisection program, and the Math/Utilities library contains a
Newton’s method program. If, however, you find occasion
to need a root finder when one of these libraries is not
available, the root finders presented here could be very

useful.

Related Sources

1.Computer-Oriented Mathematics, Ladis D. Kovach
(Holden-Day, San Francisco, 1969)

2. Numerical Methods, Robert W. Hornbeck (Quantum
Publishers, Inc., New York, 1975)

3. Modern Methods of Engineering Computation,
Robert L. Ketter and Sherwood P. Prowel, Jr. (McGraw-
Hill, Inc., New York, 1969)

\

—

Precis

This column presents the abstracts of some of the new
PPX programs which have been recently accepted. The pro-
grams were selected by our analysts as being ones that would
be of special interest to our members. You can purchase
these programs at a cost of $4.00 each. Send your order to:
Texas Instruments: PPX Department, P.O. Box 109, Lub-
bock, TX 79408. Include an additional $2.00 for postage
and handling plus applicable state tax.

If you have a need for a specific program, send a note to
PPX. There is a chance that the program may have already
been written. If it has, we will put the abstract in the next
issue of the Exchange. Requests for programs not yet written
will be placed in the “Programming Corner” column.

618071H Peng-Robinson Equation of State
Calculates for a given gas via the Peng-Robinson equation of
state at a specified value of pressure and temperature:
specific volume, and compressibility factor, fugacity coeffi-
cient and fugacity, pressure correction to the ideal (zero-
pressure) gas-phase enthalpy, and second and third virial
coefficients. The required input data for the given gas in-
cludes its molecular weight, critical pressure and
temperature, and acentric factor. For mixtures, the molar
averages of the properties of the pure components are used.
Marcel J.P. Bogart, Whittier, CA

419 Steps

918309H Space Attacker

An alien fleet is printed on the tape, attacking you, the
defender. Your mission is to select one of three cannons you
will fire at the invaders. If you succeed a part of the fleet will
disappear and the remainder of the fleet will be reprinted.
Look out for the big alien leader, if you miss him, you lose.
Fred L. Hubbard, Danville, IL

478 Steps, PC-100A, Mod. 01

January/February 1982

Page 11

148019H Loan Vs. Inflation Effect

Given the amount of loan, interest rate, projected inflation
rate, and number of payment periods, this program
calculates the payment per period, sum of payments, sum of
interest portions, sum of principle portions. This program
calculates the effect on these three categories from the first
payment to the last and sums each.

Glenn Ellis, Memphis, TN

355 Steps

698033H A Clear-Day Insolation Model

The user provides latitude and altitude of test site, time of
year, and ground-level atmospheric dust content. The
calculator will compute hourly insolation values and output
them along with the time of day in local mean solar time, the
solar zenith angle, and the atmospheric transmissivity. The
calculator will then produce a scaled plot of insolation as a
function of time.

Brad Slettene, Arcadia, CA

553 Steps, PC-100A, Mod. 10

TI-59 Programming Seminars

There may be a seminar coming to your area. These
seminars are open to anyone with a TI-59 regardless of pro-
gramming background. The seminars provide both beginn-
ing and intermediate programming training on the TI-59 in a
*hands on” fashion. Tuition for the two day class is $150.00
per person. This includes the instruction, workbook, and
luncheon for the two days. You should supply your own
TI-59. To register send your check for $150.00 payable to

SEMINAR DATES LOCATION
February 18-19 San Francisco
February 25-26 Denver

March 4-5 New Orleans
March 11-12 Philadelphia
March 18-19 Atlanta

March 25-26 Buffalo

March 29-30 New York

April 1-2 St. Louis

April 8-9 Raleigh

April 15-16 Washington D.C.
April 20-21 Los Angeles
April 22-23 Los Angeles

Membership Renewals

Is your membership about to expire? To ensure that you
will miss no newsletters, catalogs, or ordering privileges,
check the renewal table to find out if your membership will
expire soon. (If your number is not included in the range of
the table, it is not time for you to renew). The next issues of
the Exchange will list additional renewal dates.

A renewal card and reminder will be sent to each member
before the time to renew. Return the card promptly to PPX
with your check or money order for $20.00. Please do not
procrastinate in returning your renewal material as our
membership coordinator must remove delinquent members
from our computer listing. Be sure to include your member-
ship number on both your card and your check and mail to:
Texas Instruments PPX Department, P.O. Box 109, Lub-
bock, TX 79408.

Toies Bsridionks . Membership Number Renewal Due:
TI-59 Seminar 903932-904842 March 31
Texas Instruments 914842-915787 March 31
P.O. Box 10508 MS 5820 924326-924863 March 31
If you have any further questions regarding the seminars 930282-930488 March 31
or if you would like information on setting up a company 904843-906124 April 30
seminar, please contact Mary Ann Barley at 915788-916789 April 30
806—741-3272. The schedule of the upcoming seminars is 924864-925575 April 30
listed below. 930489-930683 April 30
TEXAS INSTRUMENTS BULK RATE
INCORPORATED U.S. POSTAGE
PPX » P.O. Box 53 ® Lubbock, Texas 79408 PAID
U.S. CALCULATOR PRODUCTS DIVISION Permit No. |
Lubbock, Texas
ADDRESS CORRECTION REQUESTED
Page 12 #1034532-31 January/February 1982

	v1p01
	v1p02
	v1p03
	v1p04
	v1p05
	v1p06
	v1p07
	v1p08
	v1p09
	v1p10
	v1p11
	v1p12

