TEXAS INSTRUMENTS TI-57II **OWNER'S MANUAL** ## **English** ## **KEY INDEX** This indexed keyboard provides a quick page reference to the description of each key. | 2nd | 8 | INV | 8 | R/S 28 | OFF | 9 | ON/C | 11 | |-----------------------|----|-----------|----|-------------|-------|----|------|----| | x=t | 38 | $x \ge t$ | 38 | SBR 41 | Dsz | 44 | Del | 33 | | RST | 28 | GTO | 37 | LBL 36 | BST | 31 | SST | 31 | | log | 18 | Inx | 18 | ½ 16 | X2 | 16 | VX | 16 | | DRG* | 19 | PIR | 21 | DMS DD 20 | π | 10 | x! | 18 | | DRG | 19 | sin | 19 | cos 19 | ten | 19 | (yx) | 18 | | C.1 | 25 | Fix | 16 | intg 18 | Frac | 18 | X | 18 | | XIt | 25 | EE | 14 | 12 | | 12 | + | 11 | | Part | 23 | | | | | | | | | STO | 23 | 7 | 10 | 8 10 | 9 | 10 | X | 11 | | [CM] | 23 | | | | | | | | | RCL | 23 | 4 | 10 | 5 10 | 6 | 10 | | 11 | | CP | 29 | | | | | | | | | (c) (1) (1) (1) | 23 | 1 | 10 | 2 10 | 3 | 10 | + | 11 | | Pause | 29 | | | | | | | | | LRN | 27 | 0 | 10 | • 10 | +/- | 10 | = | 11 | | | | | | | | | | | | Datamath Calculat | | | | | | | | | #### CAUTION Your TI 57-II has constant memory even when the calculator is turned off so that it remembers: - The memory partition of the calculator - Programs stored in memory - Numbers stored in data memories and in the t-register If you experience any problem, the following sequence will re-initialize the calculator for you. ON/C ON/C 2nd Part 7 2nd CM 2nd C t 2nd Part 1 ON/C If you cannot get into the "LEARN" mode, change the memory partition with the following key sequence: [2nd] Port m, m being the number of data memories you need (m ≤ 6) Texas Instruments reserves the right to make changes in materials and specifications without notice. © TEXAS INSTRUMENTS 1984 #### **EXAMPLE** Writing a program to evaluate a function. #### PROBLEM: Plot the curve $y = log(x^2)$ for integer values of x, starting at x = 1. | PRESS | DISPLAY | | COMMENTS | |---------------|-----------|----|---------------------------| | ON/C ON/C | 0 | | | | 2md Part 1 | 48,1 | | Initialize the calculator | | LRN 2nd CP | | St | Introduce the program | | STO OX 1 100 | 31 | 02 | inside the calculator | | 2nd Pause 1 + | 85 | 05 | memory | | RCL 0 = RST | 21 | 08 | | | URN ION/C | 0 | | | | RST 1 R/S | 0 | | y (O) | | RST 1 (NO | 0.60206 | | y (1) | | | 0.9542425 | | y (2) | Hold R/S down to stop the execution. ## **TABLE OF CONTENTS** | Introduction | . 6 | |--|------| | Chapter I - Using your TI 57-II as a scientific calculator | 7 | | Introduction | . 7 | | Section 1 - Keyboard and Display Basics | . 8 | | The keyboard | | | The display | | | Display indicators | | | Display messages | 0.00 | | APD TM Automatic Power Down | | | Section 2 — Data Entry keys | | | 0 - 9 - Digit keys | | | Decimal point key | | | +/- — Change sign key | 10 | | 2nd 7 — Pi key | 10 | | on/c — Clear key | | | +, -, X, +, = - Arithmetic keys | | | | | | AOS TM Algebraic Operating System | | | [],] — Parentheses keys | | | Display formats | | | EE — Scientific Notation key | | | 2nd n - Fix Decimal key | | | Section 3 — Algebraic keys | | | 🐪, 🕱 – Reciprocal, Square and Square Root keys | | | yx, INV yx — Universal Power and Root keys | . 16 | | inx, log, INV inx, INV log — Logarithm | | | and Antilogarithm keys | | | 2nd XI — Factorial key | | | 2nd X , 2nd Intg , 2nd Frac — Number Portion keys | . 18 | | DRG, INV DRG, 2nd DRG, INV 2nd DRG - Degree, | | | Radians and Grad keys | . 19 | | sin, cos, tan, INV sin, INV cos, INV tan - | | | Trigonometric keys | . 19 | | 2nd 0MS 00, INV 2nd 0MS 00 | | | Degrees/Minutes/Seconds | | | to Decimal Degrees Conversion keys | . 20 | | 2nd PAR, INV 2nd PAR — Polar/Rectangular | | | Conversion keys | . 21 | | Section 4 - Memory Operations | . 22 | | 2nd Part m — Memory Partition key | 23 | | STO m - Store memory key | 23 | | RCL m — Recall Memory key | 23 | | EXC m — Exchange Memory key | | | 2nd CM - Clear Memories keys | | | | | ## TABLE OF CONTENTS | Memory arithmetic | 24 | |---|------| | Ext — Exchange with t key | 25 | | 2nd Ct — Clear t-register | 26 | | hapter II — Using your TI 57-II as a computer | 26 | | Section 1 — Writing a program | 26 | | LRN — Learn key | 27 | | RST — Reset key | 28 | | R/S — Run/Stop keyt | 28 | | 2nd Puse — Pause key | 29 | | 2nd CP — Clear Program key | 29 | | Key Codes | | | Merged Instruction codes | | | Section 2 — Editing a program | 31 | | SST), BST - Single Step and Back Step keys | 31 | | 2nd Del - Delete key | 33 | | Automatic Step Insertion | 33 | | Modifying a program step | 33 | | Section 3 — Partitioning the memory | 34 | | 2nd Fall m — Memory Partition key | 34 | | INV 2nd Patt — Display Current Partitioning | 34 | | Section 4 — Branching Instructions | 36 | | LBL n — Labelkey | 36 | | GTO n — Goto key | 37 | | Section 5 — Conditional Transfers | | | 2nd Fant, 2nd X = 1, INV 2nd X = 1 | | | INV 2nd E - Comparison keys | . 38 | | Section 6 - Subroutines | . 41 | | 2nd SBR n - Call Subroutine key | . 41 | | INV 2nd S3R — Subroutine Return key | . 41 | | Section 7 - Building Loops | . 44 | | 2nd Dsz - Decrement and Skip on Zero key | . 44 | | INV 2nd Decrement and Skip if not Zero key sequence | . 40 | | Section 8 - Conclusion | . 40 | | Steps in writing a program | . 4 | | Debugging a program | . 4 | | | | ## TABLE OF CONTENTS | Ch | apter Ⅲ - Applications | 4 | |----|----------------------------------|---| | | 1. Statistical Analysis | 4 | | | 2. Combinations and Permutations | 4 | | | 3. Hyperbolic Functions | 5 | | | 4. Inverse Hyperbolic Functions | 5 | | | 5. Quadratic Equations | 5 | | | 6. Function plotter | 5 | | | 7. Limit of a function | 5 | | | 8. Hi-Lo Game | 6 | | Ap | pendices | | | A. | Error conditions | 6 | | В. | Accuracy Information | 6 | | C. | Keycodes in numeric order | 6 | | D. | Summary of clearing keys | 6 | | E. | Service and warranty information | 6 | | | In case of difficulty | 6 | | | Battery Replacement | 6 | | | One-Year limited warranty | | | | Suggestions | | ## Why a programmable calculator? ## What does programming a computer mean? Quite simply it's the action carried out in giving it a task to perform for us. ## What knowledge is required in order to program? First, we have to know how to complete the task ourselves, then understand the structure of the machine and finally write the task in the language of the machine in order that it can successfully understand and execute the task. A calculator, like a computer, is "fast" but "stupid". Everything has to be explained to it, even stages that appear evident to us, because the calculator works in a step by step logical manner. # But what is the difference between a computer and a programmable calculator? Both have the same structure and follow the same rules of use. The main difference is essentially the size of the internal memory and the number of instructions that can be used. Your TI 57-II offers all the necessary instructions to allow you to perform different types of programs and variations, including straight line programming, tests, loops, branching and subroutines. Therefore, it forms a good support for an introduction to programming, the limit in its memory size and in the number of instructions is in order to allow focusing on concepts and organisation. The TI 57-II is therefore a pedagogic tool. ### What is a pedagogic tool? In learning how to program we first must get acquainted with "tomorrow disciplines", but also we need to have the capacity to build "mathematical entities", then to assemble and see how they act. Mathematics often appears to be a restricted field, dedicated to selected people, mainly because it is introduced on a too logical and formal way, neglecting other qualities such as intuition, creativity, esthetic sense... Solving a problem requires above all a good analysis, but if the analysis does not lead to the solution, we will have to create elementary "mathematical models", that are well known, the study of their behaviour will very often dictate the way to link them to reach the correct solution. Using a simple program will occasionally lead to an extension of the pro- blem, opening new unexperimented fields, towards a certain "perfectionism" regarding the machine and ourselves. The logic aspect is not altered because the calculator is managed with a strict mathematical logic. Any error is pointed out without mercy by the machine. However, as it is a machine it will detect the error but will in no # USING YOUR TI 57-II AS A SCIENTIFIC CALCULATOR way make any comment. And that is where pupils have to concentrate to solve the problem in their program, before a solution can be achieved when previously in the written solution the error would have been discovered by the teacher. Programming a calculator is not only a new technique, it is also "performing mathematics in a very live and exciting way". Perhaps this is why many young people (and older people too!) have found writing programs fun, and perhaps also because they secretly enjoy a sense of revenge upon the mathematical problems posed, by not only deriving the solutions but also by understanding the concepts involved in achieving the solution. # Chapter I — Using your TI 57-II as a scientific calculator. ## Introduction Your TI 57-II is more than just a programmable calculator. You can operate it as a powerful scientific calculator, always ready to perform calculations right from the keyboard. The TI 57-II slide-rule features include: ## AOS[™] Algebraic Operating System. Comprehensive data entry with the number and decimal keys, a Rey and parentheses. Multiplication, division, addition and substraction may be used with the Algebraic Operating System (which allows the entry of most problems as they are written) with up to four operations and fifteen parentheses pending. Results may be stored in up to seven user data memories. Data may
be entered and displayed in standard format (with the necessary number of decimal places) or in scientific format. #### Mathematical and Scientific Functions. Mathematical and scientific keys including reciprocal, square, square root, universal power and roots, factorial, absolute value, fractional and integer parts, logarithm in both common and natural form, and all common trigonometric functions and their inverses for angles measured in degrees, radians or grads. #### Built-in Conversions: Conversion keys for polar to rectangular coordinates, degrees/minutes/ seconds to decimal degrees, angular measures units, and the reverse of each of these. #### KEYBOARD AND DISPLAY BASICS This chapter explains the features and keys listed above, including information on why each key is important as well as how it is used. The sections of the chapter are listed below. If you are familiar with those basic functions, you may go directly to chapter 2 and get right into programming. Section 1 - Keyboard and display basic. Section 2 - Data entry keys. Section 3 - Algebraic keys. Section 4 - Memory operations. ## Section 1 - Keyboard and display basics. This section is a quick explanation of the Basics. Please keep the calculator with you in order to try each feature as it is presented. Turn you TI 57-II on with the lowc key (at the top right of the keyboard). A zero appears in the display. If the batteries were momentarily removed or replaced, reset the calculator by pressing ON/C, ON/C, 2nd Part 7, 2nd CM, 2nd Ct, RST and ON/C #### THE KEYBOARD. If you look at the keyboard of the calculator, you will notice that the functions are grouped by subjects (data entry, memory operations, trigonometric functions, mathematical functions, programming), in order to facilitate locating a function on the keyboard. As the calculator has many features, some of its keys have more than one function. The symbols printed above some of the keys are second functions. To perform one of these functions, you need to press the <code>2nd</code> key and then press the key for the function you wish to execute. For example, to calculate the square root of 4.5, enter 4.5 and press $\sqrt{2}$. To find the factorial of 5, enter 5 and press 2nd . Notice that pressing 2nd once turns on a 2nd indicator in the display, indicating that the next key will operate as a second function. Pressing the 2nd key again will eliminate the second function operation and reset the 2nd indicator. In this book, keys for first functions are shown with black print on a white background. Keys with a black background are used to indicate second functions. The inverse key - $\overline{\text{inv}}$ - also provides additional calculator functions. When $\overline{\text{inv}}$ is pressed, the calculator executes the inverse of the function selected next. ## KEYBOARD AND DISPLAY BASICS I-1 NOTE: in cases where you need to use both the and inv keys, they may be pressed in any order. THE DISPLAY. - 12365789 -02 The display shows up to 8 digits plus eventually two digits as an exponent. Up to 8 significant digits can be entered into the calculator at any one time (entries after the 8th digit are ignored). However the display register stores eleven digits internally for use in calculations, rounded off to 8 digits in the display. Negative numbers are shown with a negative sign immediatly to the left of the number. Turning the calculator off (with the OFF key) and back on (with the ON/C key) removes the number in the display and any pending calculations. The contents of the user data memories are not affected. ## DISPLAY INDICATORS Five displays indicators give you some extra information on the status of your calculator. #### Special functions indicators: 2ND and INV indicators will appear whenever the and or inv key are pressed, to remind you that you will select an inverse or second function. To cancel the second or inverse function selection, press and or inv a second time. ## Angular mode indicators: Whenever the calculator is turned on, it is always in degree mode. Other angular modes are indicated by a display indicator: RAD for radian mode and GRAD for grad mode. The angular units may be changed with the DRG, (INV) DRG, (2nd) DRG and (INV) (2nd) DRG keys. #### Run mode indicator. The RUN indicator indicates that a program is running. To stop the execution and reset the indicator, hold down the RIS Key. ## **DATA ENTRY KEYS** #### **DISPLAY MESSAGES** - "CALC" appears any time your calculator is executing a function. During calculations, the indicators are displayed and the digits disappear, being replaced by the "CALC" message. - "ERROR" appears any time that an error occurs (for example: division by zero). The list of the error conditions is given in the APPENDIX A. Whenever an error occured, press the owe key to clear the error message. #### APDTM AUTOMATIC POWER DOWN To conserve power, after 15 to 35 minutes of nonuse the calculator is automatically powered down through the APDTM feature. However, just turning it back on allows you to continue in the state the calculator was in, use the values in the user data memories, and any stored program. Any pending operations and immediate values are lost. The effect is the same as if you had pressed the OFF key. NOTE: When the TI 57-II is running a user program, the Automatic Power Down is disabled in order to allow the execution of very long programs. # Section 2 — Data entry keys. The following keys are used in entering, removing, and manipulating data to be used in subsequent calculations. 0 - 9 - Digit keys The digit keys allow any number to be entered into the display in a logical left-to-right order. - Decimal point key The calculator operates with a floating decimal point which can be placed wherever needed. The decimal point is not displayed for integer numbers. A zero precedes the decimal point for numbers less than one. Zeros trailing the last significant digit on the right of a decimal point are not displayed unless the 2nd key has been used to fix the number of decimal places displayed. +/- - Change sign key. Pressing the change sign key instructs the calculator to change the sign of the displayed value. This allows the use of negative numbers in calculations. 2nd - Pi key. The 2nd keys enters the value of pi to 11 significant digits, with a value of 3.1415926536, the display shows the value of pi rounded to eight digits, or 3.1415927. ## **DATA ENTRY KEYS** on/c - Clear key. The once key is also used to clear entries and operations. If an incorrect number is entered, press the once key and re-enter the number. If an operation has just been pressed, pressing the once key clears all pending operations and operands. Pressing the once key twice always clears the display and all pending operations and operands. The user data memories and program registers are not affected. +, -, \times , +, = - Arithmetic keys. The basic arithmetic operations of addition, subtraction, multiplication and division are performed with these five keys. The equal key completes all pending operations and prepares the calculator for new calculations. Several operations can be combined in one expression and entered into the calculator as written from left to right. The calculator has a special feature called the Algebraic Operating System to sort the operations and perform them in the correct order. ### AOS™ ALGEBRAIC OPERATING SYSTEM. The AOSTM Algebraic Operating System allows entering numbers and combined operations into the calculator in the same order in which they are written mathematically. Combined operations are performed following the universally accepted rules of the algebraic hierarchy which assigns priorities to the various mathematical operations. Without such a fixed set of rules, expressions with several operations could have more than one correct interpretation. For example, the expression $5 + 4 \times 3 - 2$ could have several different results. However, the rules of the algebraic hierarchy state that multiplications and divisions should be performed before additions and subtractions. Using these priorities, the calculator finds the correct solution is 15. The above equation has to be evaluated as: $5 + (4 \times 3) - 2$. The complete algebraic hierarchy, in descending order of priority, is: - Single variable function keys act immediately on the displayed value. This includes: square, square root, reciprocal, trigonometric, logarithmic, exponential, factorial, absolute value, integer, fractional part and conversion keys. - 2. Universal power and roots keys: yx and inv yx. - 3. Multiplication and division keys. - Addition and subtraction keys. - 5. The equals key = completes all pending operations. ## **DATA ENTRY KEYS** The keys on the right side of the calculator are positioned to help you to remember the AOSTM hierarchy. yx + X - + = Operations with the same priority level are performed left to right. To illustrate the Algebraic Operating System, consider the following example: $4 \div 5 + 7 \times 3 \times 4 - 2 =$ | Press | Display | Comments | |-----------|---------|---| | ON/C ON/C | 0 | Clear display and pending operations. | | 4 + 5 | 5 | The division is pending. | | ± | 8.0 | The division is performed as the addition as a lower priority. | | 7 X 3 | 3 | The addition and multiplication are pending. | | X | 21 | The first multiplication is completed. | | 4 = | 84.8 | The second multiplication, then the addition are performed. The subtraction is pending. | | 2 = | 82.8 | The equals sign completes the calculation. | ## O, O - Parentheses keys. Some calculations require specifying the exact order in which numbers and operations are to be grouped. Placing a series of numbers and operations in parentheses indicates that they are to be evaluated first instead of in the order directed by the normal algebraic hierarchy. Within each set of
parentheses, the calculator operates according to the rules of algebraic hierarchy. Use the parentheses if there is any doubt about how the calculator will handle an expression. ## **DATA ENTRY KEYS** **Example:** $7 \times (3 + 4) = 49$ | Press | Display | Comments | |---------------|---------|---| | ON/C ON/C | 0 | Clear display and pending operations. | | 7 X (3 + 4) | 7 | Addition result, multiplication pending | | | 49 | Result. | The open parenthesis can also be used to enter a number already in the display into a new calculation, thus supplying a missing number, as shown in the following example. Example: 4 - (4 + 2) = -2 Press | ON/C ON/C | 0 | Clear display and pending operations | |-----------|------------|---| | 4 🖃 🕩 | 4 | Enter the number 4. The open parenthesis followed by a + causes the 4 | | | | to be repeated. | | 2 1 = | - 2 | Answer. | Comments Display The close parenthesis does not supply a missing number. It does, however, complete the operation started with the most recent open parenthesis. If no open parenthesis is pending, the close parenthesis completes all pending operations. There are limits to how many operations and associated numbers can be pending. As many as fifteen parentheses can be open at any one time and four operations can be pending, but only in the most complex situations will these limits be approached. If you go beyond these limits, an error message is displayed. You may see equations or expressions written with parentheses used to indicate implied multiplication: (2 + 1)(3 + 2) = 15. The calculator does not perform implied multiplications. You must enter the multiplication sign. Here is an example on using parentheses. Evaluate $\frac{(8+9)\times -19}{(3+10)\div 7} = -173.92308$ In problems of this type, the calculator must evaluate the entire numerator, then divide by the entire denominator. To be sure that this takes place, add an extra set of parentheses around the numerator and demominator. ## **DATA ENTRY KEYS** | | T 0 | \neg | |---|-----|--------| | | 1-2 | | | _ | 1 2 | _ | | Press | Display | Comments | |-------------|-------------|---------------------------------------| | ON/C ON/C | 0 | Clear display and pending operations. | | TT 8 + 9 TX | 17 | (8 + 9) displayed. | | 19 +/- 1 + | -323 | The value of the numerator. | | 1 | 1.8571429 | The value of the denominator. | | | - 173.92308 | The result. | #### DISPLAY FORMATS. Even though the calculator has a display and entry limit of eight digits, the internal display register holds calculated results to 11 digits for greater accuracy in following calculations. The value displayed is rounded to eight digits. In addition to the standard eight-digit floating decimal display, there are several other display formats available to increase the versatility of the calculator. #### EE - Scientific Notation Key Many scientific and engineering calculations involve very large or small numbers which can be awkward to manipulate. Scientific notation makes these values easier to handle. Any number can be expressed in scientific notation as a base value (mantissa) times 10 raised to some power (exponent). For example, the value 1,050,000 is expressed as 1.05 × .106 in scientific notation. The sign (+ or -) of the exponent indicates where the decimal point is placed when the number is written in standard form. A positive exponent indicates that the decimal is shifted to the right to display the number is standard format, and a negative exponent indicates that it is shifted to the left. The value of the exponent gives the number of places the decimal point has to be moved. The following table shows some numbers expressed in both standard form and scientific notation. | Standard Notation | Scientific Notation | |-------------------|---------------------------| | 6.789 | 6.789×10^{3} | | .0000000021 | 2.1×10^{-9} | | -16,389,043 | -1.6389043×10^7 | | 8 775 | $8.775 \times 10^{\circ}$ | Your calculator's scientific notation allows you to use numbers as small as $\pm\,1\,\times\,10^{-99}$ and as large as $\pm\,9.999999\,\times\,10^{99}$. Numbers smaller than $\pm\,1\,\times\,10^{-7}$ and larger than $\pm\,9.999999\,\times\,10^7$ must be entered into the calculator in scientific notation. If calculations exceed these limits, the results are automatically displayed in scientific notation. ## **DATA ENTRY KEYS** **Example:** Suppose you wanted to enter 6.023×10^{23} but accidentally press the exponent digits in the reverse order. | Press | Display | | Comments | |-------------|---------|----|--| | ON/C ON/C , | | 0 | Clear display and pending operations. | | 6.023 EE 32 | 6.023 | 32 | The exponent digits are reversed. | | 3 | 6.023 | 23 | The new entry shifts the exponents and corrects the error. | Regardless of how a mantissa is entered in scientific notation, the calculator normalizes the number, displaying a single digit to the left of the decimal point, when any function or operation key is pressed. After pressing the **EE** key, all results are displayed in scientific notation. To remove the scientific notation format or convert a number to standard form, press **INV EE**. Scientific notation is also removed by **ONV** or turning the calculator off and back on. If the number displayed is outside the range $\pm 1 \times 10^{-7}$ to $\pm 9.9999999 \times 10^{7}$, the calculator returns to the standard format only when a calculated result or entry is in the displayable range. **Example:** Enter 32.5×10^4 in scientific notation and change it to standard notation. | Press | Display | | Comments | |-----------|---------|----|--------------------------------------| | ON/C ON/C | | 0 | Clear display and pending operations | | 32.5 EE 4 | 32.5 | 04 | Entry | | = | 3.25 | 05 | Scientific notation | | INV EE | 325000 | | Standard notation | Data entered in standard form may be mixed with data in scientific notation for quicker calculations. The calculator converts the standard numbers and displays the results in scientific notation. Example: $3.2 \times 10^3 + 12575.321 = 15775.321$ | Press | Display | | Comments | |-------------|-----------|----|--------------------------------------| | ON/C ON/C | 0 | | Clear display and pending operations | | 3.2 EE 3 | 3.2 | 03 | Enter first number | | + 12575.321 | 12575.321 | | Add second number | | | 1.5775321 | 04 | Result in scientific notation | | INV EE | 15775.321 | | Convert result to standard notation | #### ALGEBRAIC KEYS #### 2nd fix n - Fix Decimal Key In some calculations you may wish to display a fixed number of digits following the decimal point in standard, or scientific notation. Pressing 2nd for n directs the calculator to round the display to n decimal places. The internal display register still retains the full 11 digits accuracy for use in subsequent calculations. Fixed decimal format can be used in conjunction with scientific notation. In that case, 2nd for a sets the number of decimal places displayed in the mantissa. If the calculator is in the fixed-decimal format and a calculated result exceeds $\pm 9.9999999 \times 10^7$ or goes below $\pm 1 \times 10^{-7}$, the display automatically converts to scientific notation and the fixed-decimal format is ignored. The display returns to the fixed-decimal format when scientific notation is no longer necessary. Reset the calculator to the floating decimal point with INV 2nd Fix, 2nd Fix 8, 2nd Fix 9, or by turning the calculator off and back on. #### Example: | Press | Display | | |-------------|---------------|--| | ON/C ON/C | O Z0 . | | | 2nd 71 | 3.1415927 | | | 2nd Fix 2 | 3.14 | | | 2nd Fox 4 | 3.1416 | | | INV 2nd Fix | 3.1415927 | | ## Section 3 — Algebraic keys. In this section you will get acquainted will the powerful algebraic functions included in your TI57-II. NOTE: Limits on the range and accuracy of these keys are discussed in the appendix. Values out of the range cause the display of an ERROR message. ⅓, 🕱 – Reciprocal, Square and Square root keys. These three keys act immediately on the number in the display (x), and do not affect pending calculations. 1 divides the displayed number into one. calculates the square of the displayed number, multiplying it by itself. root of a number (x) is labeled \sqrt{x} and is such that \sqrt{x} times \sqrt{x} equals x. The number in the display must be positive. yx, INV yx - Universal Power and Root Keys [yx] is the universal power key. It raises any positive number to any power. To use this key: #### ALGEBRAIC KEYS - Enter the number to be raised to a power ("y"). - · Press yx. - Enter the power ("x"). - Press = Example: Calculate 3.18974.7343 | Press Display | | Comments | | |---------------|-----------|--------------------------------------|--| | ON/C ON/C | 0 | Clear display and pending operation. | | | 3.1897 yx | 3.1897 | "y" value. | | | 4.7343 | 4.7343 | "x" value. | | | | 242.60674 | Result: "'yx". | | | | | | | INV Y^{x} is the universal root sequence. It allows you to take any root of any positive number ($^{x}\sqrt{y}$). To use this key: - Enter the number to take the root of ("y") - Press INV [yx] - Enter the root to be taken ("x") - Press = Example: Calculate 3.871 $\sqrt{21.496}$ | Press | Display | Comments | |-----------------|-----------|---| | ON/C ON/C | 36416 | Clear display and
pending operations | | 21.496 INV [yx] | 21.496 | "y" value | | 3.871 | 3.871 | "x" value | | | 2.2089685 | Result ∜y | NOTE: See appendix B for accuracy information. Remember that Y and INV Y have the higher priority in the AOSTM hierarchy. Consider the following example: $4 + 6 \times 2^3 \div 7 = 10.857143$ | Press | Display | Comments | |-----------|-----------|---| |
ON/C ON/C | 0 | | | 4 + | 4 | | | 6 X | 6 | Addition is pending. | | 2 (yx) | 2 | Addition and multiplication are pending | | (3)÷ | 48 | yx and multiplication are executed. | | 7 = | 10.857143 | = completes the calculation. | ## ALGEBRAIC KEYS Inx, log, INV Inx, INV log — Logarithm and antilogarithm keys. Logarithms are mathematical functions used in a variety of technical and theoretical calculations. In addition, they form an important part of many mathematical "models" of natural phenomena. The logarithm keys give immediate access to the "log" of any number without having to locate it in a table. ### Inx - The natural Logarithm key Immediately displays the natural logarithm (base e = 2.7182818) of the displayed number which must be greater than zero. ## log - The Common Logarithm key Immediately displays the common logarithm (base 10) of the number in the display (which must be greater than zero). ### INV Inx - ex Key Sequence Raises e to the power of the number in the display (natural antilogarithm). ## INV log - 10x Key Sequence Raises 10 to the power of the displayed number (common antilogarithm). **Example:** Calculate log 15.32 In 203.451, $e^{-.69315}$, 10^{π} . | Press | Display | Comments | |---|--|---------------------------------------| | ON/G ON/C | Date | Clear display and pending operations. | | 15.32 log
203.451 lnx
.69315 +/- INV lnx
2nd 7 INV log | 1.1852588
5.3154252
0.4999986
1385.4557 | | ## 2nd x! - Factorial Key Sequence. The factorial of any positive integer number (x) is written x!, and is equal to: $1 \times 2 \times 3 \times \times 2 \times 3 \times ... \times 2 \times$ acts on the number in the display and calculates the factorial of this number, which must be any positive integer less than 70. ## 2nd X , 2nd Intg , 2nd Frac - Number Portion Keys. 2nd calculates and displays the absolute value of the number in the display. The absolute value of a number is the magnitude of the number, regardless of its sign. Thus the result of and state is always a positive number. 2nd Into truncates the number in the display register by discarding its decimal part. ## ALGEBRAIC KEYS I-3 **NOTE:** For negative numbers, you need to subtract 1 to the displayed result to follow the mathematical definition which states that the integer part of a number is equal to the next integer number less or equal than the argument. Thus the integer part of -4.5 is -5, when your calculator will give you -4. [2nd] Frac displays the fractional part of the number in the display register and discards the integer part. DRG, INV DRG, 2nd DRG, INV 2nd DRG - Degree, radian, and grad keys. The calculator handles a variety of calculations involving angles, such as the trigonometric functions and polar/rectangular conversions. When performing these calculations, select any one of the three common units for angular measure. Degrees are each equal to 1÷360 of a circle. A right angle equals 90°. Radians are each equal to 1÷2 π of a circle. A right angle equals π ÷2. radians Grads are each equal to 1÷400 of a circle. A right angle equals 100 grads. The calculator is always in degree mode when it is turned on. Pressing DRG changes it to radian mode, indicated by RAD in the display. Pressing DRG again changes it to grad mode, indicated by GRAD in the display. Pressing DRG again returns the calculator to degree mode. You may also go through the modes in reverse order — from degrees to grads to radians and back to degrees — by pressing the NNV DRG key. The [2nd] DRG key changes the mode displayed, and additionally converts the number in the display to the new units. Thus 90 in the degree mode followed by [2nd] DRG changes the mode to radians and the display to 1.5707963 ($\pi\div2$). Pressing [2nd] DRG again changes the mode to grads and the display to 100. You may also go through the modes and values in reverse order—from degrees to grads to radians and back to degrees—by pressing the [NV] [2nd] DRG key. sin, cos, tan, INV sin, INV cos, INV cos — Trigonometric keys. The trigonometric keys an, cos and tan calculate the sine, cosine and tangent of the angle in the display, with the angle measured in the units selected with the ORG, (NY) ORG, 2nd ORG, or (NY) 2nd ORG keys. The trigonometric functions relate the angles and sides of a right triangle as shown below. ## ALGEBRAIC KEYS The inverse functions of the trigonometric keys give the angle, in the units selected, whose sine, cosine or tangent is in the display. INV sin calculates the arcsine (sin⁻¹), INV cos calculates the arccosine (cos calculates the arctangent (tan c Note the following ranges from the use of the inverse trigonometric functions. | Arc Function | Ranges of Resultant Angle | |--------------|---| | arcsin x | 0 to 90°, π÷2 radians, or 100G | | arcsin -x | 0 to 90°, $-\pi \div 2$ radians, or $-100G$ | | arccos x | 0 to 90°, $\pi \div 2$ radians, or 100G | | arccos - X | 90° to 180°, $\pi \div 2$ to π radians, or 100G to 200G | | arctan x | 0 to 90°, π ÷2 radians, or 100G | | arctan -x | 0 to 90°, $-\pi \div 2$ radians, or $-100G$ | | | | 2nd V , MNV 2nd V — Degrees/Minutes/Seconds to decimal degrees conversion keys. There are two ways of representing an angle in degrees. One method is to use the decimal degree format DD.dd. Here DD represents the integer portion of the angle and dd represents the fraction portion written as a decimal. Up to 8 digits may be entered. The second method is to use the degree/minute/second format DD.MMSSss. Again DD represents the whole angle. MM represents minutes and SS denotes seconds. For greater accuracy, fractional seconds may be entered in the ss position. The decimal point separates degrees from minutes. To convert from the degree/minutes/second format to degrees, enter the angle in the display as DD.MMSSss and press and press and converts decimal degrees to degrees, minutes, and seconds. Two digits should always be entered for minutes and two for seconds. Trailing zeros need not be entered. Example: Convert 3°1'30.456" to decimal degrees and back. | Press | Display | Comments | |-------------------|-----------|---| | ON/C ON/C | 0 | Clear display and pending operations. | | 3.0130456 2nd Ms. | 3.0251267 | Answer in decimal degrees | | INV 2nd IN. 02 | 3.0130456 | Answer returned to degrees/minutes/seconds. | ## ALGEBRAIC KEYS The same process can be used to convert hours, minutes, and seconds to decimal hours and vice versa. 2nd PAR, (INV) 2nd PAR - Polar/Rectangular conversion keys The rectangular coordinate system describes where points are placed on a grid with a pair of numbers. The first, the x-coordinate, describes the distance of the point from the y-axis, which is a vertical line. The second, the y-coordinate, describes the distance of the point from the x-axis, which is a horizontal line. The following shows the point described in rectangular coordinates as (3,4). The polar system of coordinates describes a point in terms of a line drawn from a centre to the point. It also uses a pair of numbers. The first number is the length of the line, labeled R. The second is the number of degrees the line is from horizontal, labeled theta (θ). The following shows the same point, but described as (5,53.130102°). The conversion from polar to rectangular coordinates and back involves some detailed arithmetic. Fortunately, the calculator can perform these calculations. To convert from polar to rectangular coordinates, follow these steps: Enter the R value. Press x 1 t Enter the θ value Press 2nd P2R ## MEMORY OPERATIONS The y- coordinate is displayed. Press [xit] to get the x-coordinate in the display. To convert from rectangular to polar coordinates, follow these steps: Enter the x-coordinate Press XII Enter the y-coordinate Press INV 2nd PAR The θ value is displayed in the units selected by the $\overline{\text{DRG}}$ key. Press (x) to get the r-value in the display. The range of θ is from +180° to -180°, + π to - π radians and 200 to - 200 grads. Caution: The 2nd PR and INV 2nd PR sequences clear the pending operations. Example: Convert R = 45 metres, θ = 31,6 degrees to rectangular coordinates. | Press | Display | Comments | |----------------------|------------------------|--| | ON/C ON/C | 0 | Clear display and pending operations. Press DRG to select the degrees mode. | | 45 ETT 31.6 2md Park | 23.579366
38.327712 | y-coordinate value.
x-coordinate value. | ## Section 4 - Memory operations The TI 57-II may be set to have a maximum of seven user data memories, numbered 0 to 6, which can be used to store numbers you may need to use later (intermediate results, parameters). Because of the calculator's Constant Memory™ feature, the contents of the user data memories are not lost when the calculator is turned off, thus allowing you to keep data in your calculator. The following section describes the memory operations. ## MEMORY OPERATIONS 2nd Part m - Memory partition. The [2nd Part key sequence sets the partitioning of the calculator's memory between user data memories and user program memories. This sequence has to be followed by the number of user data memories, m, that you wish to have available (m can vary from 1 to 7). For example to allow using all seven data memories, you have to press 2nd 7. Please refer to chapter 2 to get more details on that important feature. STO m - Store memory key. The sto m key allows you to store the displayed number into the user memory specified with m, erasing automatically any number previously stored in that memory. The displayed number is not affected and remains available. RCL m - Recall memory key. The
RCL m key recalls to the display the number in user data memory m. The contents of this memory is not altered. The number that was in the display is lost. Exc m - Exchange memory key. The Excim key exchanges the value in the display with the value in user data memory m. This allows you to recall the contents of a memory without losing the displayed number. 2nd CM - Clear memories keys. The [2nd] CM key clears all the user data memories as defined with the current partitioning. The display, program memories and t-register are not affected. #### Example: | Press | Display | Memory | Comments | |-----------|---------|--------|---------------------------------------| | ON/C ON/C | 0 | 0 | Clear display and pending operations. | | 2nd CM | 0 | 0 | Clear all memories. | | 3 STO 0 | 3 | 3 | Store 3 in memory 0. | | 5 | 5 | 3 | Enter 5 in display. | | EXC 0 | 3 | 5 | Exchange display and memory 0. | | RCL O | 5 | 5 | Recall memory 0 to display. | NOTE: To clear any single data memory press the following sequence: ON/C STO m (with m being the number of the data memory you want to clear). ## MEMORY OPERATIONS #### MEMORY ARITHMETIC In addition to the basic memory functions that you just saw, the TI 57-II allows you to perform arithmetic on the numbers stored in a memory, without affecting the displayed number and the calculations in progress. To use these sequences: - Enter the number that is to operate on the memory value. - · Press STO. - Enter the operation to be performed. - · Enter the number of the memory to be used. NOTE: because of the calculator's Constant MemoryTM feature, the user data memories are not cleared when the calculator is turned off. Be sure to press oncestom initially to clear the desired user data memory before using any of the following key sequences. 2nd 2nd clears all the user data memories defined by the current partitioning. sto + m algebraically adds the displayed value to the contents of user data memory m. sto — m algebraically subtracts the displayed value from the contents of user data memory m. sto X m multiplies the contents of user data memory m by the displayed value. ** To + m divides the contents of user data memory m by the displayed value. STO Y m raises the contents of user data memory m to the power in the display. STO INV YX m takes the root indicated by the number in the display of the value in user data memory m. Example: $$\begin{array}{rcl} 28.3 \times 7 & = & 198.1 \\ 173 + 16 & = & 189 \\ 31 - 42 + 7.8 & = & -3.2 \\ \hline \text{Total} & 383.9 \end{array}$$ ## **MEMORY OPERATIONS** | Press | Display | Comments | |--------------------|---------|---| | ON/C ON/C STO 0 | 0 | Clear display, pending operations, and memory 0. | | 28.3 X 7 = STO + 0 | 198.1 | Result of first problem added to user data Memory O. | | 173 + 16 = STO + 0 | 189 | Result of second problem added to user data memory 0. | | 31 - 42 + 7,8 | | | | = STO + 0 | - 3.2 | Result of third problem added to user data memory 0. | | RCL 0 | 383.9 | Sum of the problems. | xit-"x" Exchange with "t" key. This is a special key that exchanges the displayed number with the contents of a special data register which is called the "t" register or "test" register. This "t" register is used for polar-rectangular conversions and for decision-making operations as described in Chapter 2. This memory can also be used as a data memory. 2nd C.C - Clear "t" register. The 2nd Ct key allows you to clear the contents of the "t" or "test" register. NOTE: The value stored into the t-register can only be altered by the following keys: x(t), 2nd Ct, 2nd PtR and (INV) (2nd PtR). ## Chapter II - Using your TI 57-II as a computer ## Introduction. We have now seen how to use all the scientific functions of the TI 57-II, to perform computations right from the keyboard. We are going to approach in chapter 2 the "programmable" side of this calculator, which makes it a real computer. When you perform computations from the keyboard, you spend most of the time is thinking which key you will have to press next and in looking for keys on the keyboard. When you have repetitive or iterative calculations to perform, a programmable calculator can save you a lot of time. You teach it how to perform the calculation, and then, upon a single key push, it will perform calculations, test hypotheses, take decisions and give you quick and accurate results again and again. The following sections show you how to use the programming power of your calculator. ## Section 1 - Writing a program: Now, let's have a look at how to program the TI 57-II. Consider the following problem: you want to evaluate the value of the function: $F(x) = \frac{1}{x^2 + 1}$ To calculate this expression from the keyboard, you would: - First type in the "x" value, - Then press: x2+1= 1/x To avoid repeating this key sequence any time you want to evaluate this expression, let's enter it as a program into your calculator. Here is what you need to do: | Press | 1 | Display | Comments | |-----------------------|----|---------|-------------------------------------| | 2nd Part 1 | | 48.1 | | | LRN 2nd CP | | St | Get into "learn" mode, clear memory | | X ² | 34 | 00 | • | | + | 85 | 01 | | | 1 | 01 | 02 | | | | 95 | 03 | | | ⅓ | 33 | 04 | | | R/S | 13 | 05 | | | RST | 21 | 06 | | | LRN | | 48.1 | Exit "learn mode" | #### WRITING A PROGRAM Your program is entered in the program memory. Now you just have to execute it. | Press | Display | Comments | |-----------|----------|----------------------| | RST 1 R/S | 0.5 | F(x = 1) = 0.5 | | 2 R/S | 0.2 | F(x = 2) = 0.2 | | 10 R/S | 0.009901 | F(x = 10) = 0.009901 | You can notice that to compute f(x), only a few keystrokes are needed. Now let's come back to the program entry. LRN - Learn key. Pressing the LRN key once puts the calculator in a special mode of operation, called learn mode in which the calculator is ready to "learn" a program. Caution: If the memory partitioning is such that there are no program steps available, the calculator will not enter the learn mode and an error message will be displayed. To be sure to start with a clean empty program memory, select the learn mode by pressing LRN 2nd CP. (2nd CP removes any previous program and assures that the program is keyed in beginning at location 00). You get the following display. "St" indicates that you are pointing to the starting location of the program memory. The calculator is ready to "learn" a program. You just need to key in the functions you want to enter in your program, in the same order as if you were doing calculations from the keyboard. | Press | Dis | play | |-----------------------|-----|------| | LRN 2nd CP | | St | | X ² | 34 | 00 | As you can see from that example, the learn mode display has a special format, showing the step number and the contents of that step. | 34 | 00 | |----------|------------------| | + | • | | key code | program location | ## WRITING A PROGRAM The 2 digits located in the exponent location indicate the step number you just entered into the machine. The digits to the left of the display indicate the instruction code contained in that step. The key code identifies which keystroke has been saved into the program memory. Here 34 is the key code associated to the 🔀 key. The key codes are discussed further on in this section. Keeping track of the program location is the task of the program counter. This counter is automatically incremented any time you press a new key. Thus the display will always show which step you just keyed in. Pressing LRN a second time will take you out of the learn mode, restoring the display to its original state. #### RST - Reset key: The RST key brings the program counter back to the starting location of the program memory. This key can be used as part of a program or right from the keyboard when out of the learn mode. - When encountered in a program, this instruction will move the program counter back to the program starting location and the program execution continues from there. - Used when out of the "learn" mode, (RST) sets the program counter back to the program starting location. NOTE: The RST keys also clears the subroutine return register. ## R/S - Run/Stop key: The NS key starts or stops the program depending on the status of the calculator (a running program will be stopped and a stoped program will start running from the location of the program counter). The "RUN" indication shows whether a program is running or not. This key can be used as an instruction inside a program or as a command, right from keyboard when out of the learn mode. - When encountered in a program, the R/S instruction simply stops the program execution and displays whatever is in the display register. This is useful to see intermediate results, to enter new parameters for the program, or to halt the action when the program is finished. - When out of "learn" mode, R/S either stops the program execution (the key has to be held down momentarily) or resumes the execution from the location indicated by the program counter. NOTE: To run a program right from the beginning, you need to press (RST) then R/S Caution: Any program has to be ended with either a RIS instruction or a RST instruction or a branching instruction (these instructions will be discussed later). Otherwise, the program counter will keep on going up to the end of the program memory, then go back to the beginning of the program, and continues the execution from there and so on without stopping. ## WRITING A PROGRAM If this happens, unused locations, between the end of the program and the end of the program memory, are considered as "O", thus loading the display with zero. When the calculator is running a user program the automatic power down is disabled, thus allowing the execution of very long programs. #### 2nd Pause - Pause key: The 2nd Pause key, when encountered in a program causes the current
value of the display register to be displayed for one or two seconds, letting you see intermediate values without stopping the program. ## 2nd CP - Clear program key: Pressing 2nd CP while in "learn" mode clears the program memory of your TI 57-II and brings the program counter back to the program starting location. The user data memories and the t-register are not affected. This key has no action if it is used when out of the "learn" mode. #### **KEY CODES** When you are entering a program into the calculator's program memory, we have seen that the display shows the program location and the key code associated to the function that was just keyed in. In order to facilitate the reading of these key codes, they have been assigned the following way. - The code for any number key is just the number itself (00 to 09) - . The code for any first function key is a two digit number: the first digit is the row of the key, the second digit is its column (rows are numbered 1 to 9 from top to bottom, colums from 1 to 5 left to right). For second functions, column numbers are respectively 6, 7, 8, 9 and 0 (from left to right). As an example here are some key codes: | Key | Key code | Row number | Column number | |-----------|----------|------------|---------------| | sin | 42 | 4 | 2 | | 2nd Pause | 96 | 9 | 1 | | 2nd X | 40 | 4 | 5 | The keys which cannot be used in programming do not have a code (for Example: LRN, SST ...). #### MERGED INSTRUCTION CODES In order to take the best out of the program memory available, one program location will always contain a complete instruction, including up to four keystrokes. - Second functions are merged as shown on the following diagram. - . The (INV) key is also merged with the key to which it applies, and is shown as a negative sign in front of the standard code of that key. For example [INV] sin | will be shown as "- 42". ## WRITING A PROGRAM Functions followed by a number, such as STO, RCL, etc..., are also merged with this number and are shown in the following way: "key code • number code". For example: STO 2 will be shown as: "61.02". Memory arithmetic instructions, such as STO +, STO X, etc..., are merged the following way: For example: STO + 2 will be shown as "61.85.02" STO (INV) (YX) 0 will be shown as "-61.45.00" NOTE: A list of the key codes in numeric order is provided in the appendix C. Caution: Make sure to complete the instructions requiring to be followed by a number. Otherwise, they will be ignored when the program will run. The following diagram shows all the existing keycodes | Row | | | | | 40 | |--------|---------------|---------------|-------------|--------------------------|---------------| | 1 | 2nd * * | INV ** | R/8 13 | OFF * | ON/C 15 | | 2 | x=1 26 | x = t 27 | SBR 28 | 29 | del * | | | RST 21 | GTO 22 | LBL 23 | BST * | SST | | 3 | log 31 | Inx 32 | ⅓ 33 | x ² 34 | 35 . | | 4 | DRG. 46 | PtR 47 | 18 ms 201 | T 49 | x: 46 | | | DRG 41 | sin 42 | cos 43 | ten 44
Frac 59 | EXT 50 | | 5 | C: 56 | f. 57 | Intg 58 | 1) 54 | + 55 | | | 211 51 | EE 52 | 1 53 | 54 | 4 55 | | 6 | Part * | CE 07 | 8 08 | 9 09 | X 65 | | | STO 61 | 7 07 | 6 08 | | | | 7 | CW 76 | 4 04 | 5 05 | 6 06 | 75 | | | RCL 71 | • 04 | 00 | ت ت | | | 8 | EXC 81 | 1 01 | 2 02 | 3 03 | + 85 | | 9 | Pause 96 | ٠٠٠ | | 53 5 | | | 5 | LRN * | 0 00 | 93 | +/- 94 | = 95 | | 0-1 | 1 | 2 | 3 | 4 | 5 | | Column | | - | - | | | ^{*} No Key code. These keys cannot be put in a program. ## **EDITING A PROGRAM** ## Section 2 — Editing a program. We have now seen how we can enter simple programs into your TI 57-II. Before going any further, let's have a look to the editing features provided by this calculator, features designed to help you check that your program works correctly. With these special keys, you will be able to read back and correct the steps you have entered in the program, delete useless steps and insert missing steps. This provides also an efficient debugging (or correcting) technique: the step by step execution. This section is describing all these features. #### SST, BST Single step and Back step keys: These two keys allow you, when you are in "learn" mode, to step through your program either forward with the SST key or backward with the SST key, thus allowing to check stored key codes. Note that these two keys have no key codes, as they cannot be entered as program steps. The <u>sst</u> key allows to step forward in your program. Any time you press this key, the program counter is incremented by one and the corresponding step appears in the display. The sst key allows to step backward in your program. As a result, the program counter is decremented by one, showing the previous step in the display. NOTE: The sst key can also be used when out of "learn" mode. Any time you press that key, the instruction pointed to by the program pointer is executed and the program pointer is updated. This feature is very important as it allows you to execute your program one step at a time, giving you the opportunity to compare what your program is actually doing with what you expected it to do. This is a very powerful debugging technique, allowing to check a program and to understand how your TI 57-II works. The BST key has no effect if used when out of "learn" mode. ## Example Let's take a simple example to better understand the use of these editing keys. We will enter a program that displays the squares of the counting numbers (0, 1, 2, 3, ... etc.). Key in the program as follows: ^{**} These keys are merged with the following keystroke. ## **EDITING A PROGRAM** | Press | Display | | Comments | |-----------------------|----------|----|--| | ON/C ON/C | 0 |) | Clear pending operation. | | 2nd Part 1 | 48.1 | | Partition memory. | | ON/C | C |) | | | LRN 2nd CP | | St | Enter learn mode and clear the program memory. | | RCL 0 | 71.00 | 00 | | | X ² | 34 | 01 | | | 2nd Passas | 96 | 02 | | | 1 | 01 | 03 | | | STO + 0 | 61.85.00 | 04 | | | RST | 21 | 05 | | | LAN | (|) | | | RST | (|) | | Now that the program is entered, let's edit it: | Press | Displ | ay | Comments | |--------|-------|----|-----------------------------------| | RN | | St | | | BST | 71.00 | 00 | RCL O code - Step 00 | | ST | 34 | 01 | x1 code - Step 01 | | ST | 96 | 02 | 2nd Code - Step 02 | | BST | 01 | 03 | 1 code - Step 03 | | BST | 96 | 02 | 2nd Prod code - Step 02 | | B\$T) | 34 | 01 | ₹2 code - Step 01 | | RN RST | | 0 | Now let's execute it step by step | | STO 0 | | 2 | Start counting from 2 | | IST) | | 2 | Recall memory 0 | | 18T | | 4 | X² | | IST | | 4 | Pause | | ST | | 1 | Enter 1 in display | | SST | | 1 | Add 1 in memory zero | | 88T) | | 1 | Reset the program counter | | BST | | 3 | Recall memory zero | | SST | | 9 | X ² | If you experience problems with your programs, this feeture will allow you to understand where it comes from. Caution: In "learn", mode if sst is pressed when the program pointer is pointing to the last program step available in the current partitioning, the calculator will wrap-around to the starting location of the program. Reciprocally, sst will cause a wrap-around from the program starting location to the last program step available. #### **EDITING A PROGRAM** 2nd 6 - Delete key: When in "learn" mode, the 2nd but key allows you to delete the step currently in the display, moving all the following intructions up by one location. You just have to select to the exact instruction you want to delete (with \$87) and \$87) and then press 2nd 011. #### Automatic step insertion: The TI 57-II has an automatic insertion feature allowing to insert steps into your program. Therefore to insert a step, the following should be done: - · Enter the "learn" mode. - Position the program pointer at the step that has to be followed by the step you want to insert. - · Key in the step to insert. Caution: When you insert a step in a program, all the following steps are moved down by one location. Therefore the contents of the last location of the program memory is lost. #### Modifying a program step: If you want to modify an incorrect program step you must: - · Enter the "learn" mode - · Position the program pointer on the step that has to be modified. - Delete the step with the 2nd bel key. - · Key in the correct instruction. #### Example: Let's come back to our simple program displaying the squares of the counting numbers. We are going to modify it to display the reciprocal of these numbers. Press (IRN) and (ISST) (or (BST)) until you point the step number 01 | Press | Display | , | Comments | |---------|----------|----|--| | | 34 | 01 | Step that we want to modify | | 2nd Dat | 71.00 | 00 | The x2 has been wiped off. | | 1/2 | 33 | 01 | Automatic insertion of the 1/2 function. | | BST | 71.00 | 00 | Now let's look at the final | | SST | 33 | 01 | program | | SST | 96 | 02 | | | SST | 01 | 03 | | | SST | 61.85.00 | 04 | | | SST | 21 | 05 | | | LRN | (| 0 | | ## Section 3 - Partitioning the memory. The TI 57-II has seven user memories (numbered 0 to 6). These memories are available for either data storage (using the sto m or exc m keys sequences) or for programming purpose. In order to optimize the use of these memories, the TI 57-II allows you to select how many memories you want for data storage purpose, thus allocating the remaining memories to program storage. This feature is named: #### Partitioning of the memory. This section describes how you can partition the memory of your TI 57-II to increase its efficiency. ## 2nd Part m - Memory partition key: The 2nd key sets the partitioning of the calculator's memory, between data storage memories and program storage memories. The key is followed by the number of user data memories, m, that you wish to have available. As a result, the display will show the number of program
steps and user data memories available with the following format: ss.m where ss is the number of program steps available and m is the number of user memories available. The calculator can be set with a maximum of seven user data memories, and no program steps or a minimum of one user data memory and 48 program steps. Each data memory converted to program memory is equivalent to eight program steps (or instructions). The following table shows you all the partitions available. | 2nd Part m | Number of data memories | Data memories
labels | Number of
program steps | Program step
labels | |------------|-------------------------|-------------------------|----------------------------|------------------------| | m = 1 | 1 | 0 | 48 | 00 to 47 | | m = 2 | 2 | 0 to 1 | 40 | 00 to 39 | | m = 3 | 3 | 0 to 2 | 32 | 00 to 31 | | m = 4 | 4 | 0 to 3 | 24 | 00 to 23 | | m = 5 | 5 | 0 to 4 | 16- | 00 to 15 | | m = 6 | 6 | 0 to 5 | 8 | 00 to 07 | | m = 7 | 7 | 0 to 6 | 0 | _ | The following example illustrates how to use the above table: Set the number of user data memories to three by pressing 2nd 2nd 3. Those memories are numbered 0,1 and 2. In addition there are 32 program steps available, numbered 00 to 31. ## PARTITIONING THE MEMORY Caution: When you repartition the memory the contents of the data memories transformed into program step or the contents of program steps transformed into data memories are lost. If the program pointer is at a location which becomes user data memory, it is reset to "St". #### Example: Let's consider changing the partitioning from 3 data memories to 5 Before changing the partition, the calculator has 3 data memories labeled 0 to 2 and 32 program steps labeled 00 to 31. | Press | Display | Comments | |------------|---------|--| | ON/C ON/C | 0 | Clear display and pending operations. | | 2nd Part 5 | 16.5 | Indicates that 16 program steps are available (00 to 15) and 5 data memories 0 to 4) | Above diagram illustrates the modification of the calculator memory when moving from 3 data memories to 5. Program steps 16 to 31 are lost. Memories 3 and 4 come with 0 inside. Program steps 00 to 15 and memories 0 through 2 are not affected. Reciprocally, if you now move back to 3 data memories, you will go back to the previous configuration thus losing the contents of memories 3 and 4. Program steps 16 to 31 are available and contain the code 00 (zero). Program steps 00 to 15 and memories 0 through 2 remain unaffected. NOTE: 2nd 2 0, 8 or 9 are invalid key sequences and will result in the display of an "ERROR" message. Warning: Before using 2nd 2nd m key, remove the scientific mode and the fixed decimal mode by pressing INV EE, INV 2nd Fix, in order to go back to standard display format. Otherwise, you will not get the number of program steps and user data memories with the ss.m format. ## **BRANCHING INSTRUCTIONS** ## INV 2nd Part - Display current partitioning: The INV 2nd Part key sequence recalls to the display the current partitioning with the ss.m format where ss is the number of program steps available and m the number of user data memories. #### Example: | Press | Display | Comments | |----------------------|-----------|--| | ON/C ON/C 2nd Part 1 | 0
48.1 | Set partitioning to one user data memory and 48 program steps. | | ON/C | 0 | Clear display. | | INV 2nd Part | 48.1 | Recall the current partitioning. | ## Section 4 - Branching instructions. When solving a problem, it very often happens that you wish to execute the computations in a different way, depending on the parameters that you know. For example, when converting degrees Celsius into degrees Fahrenheit: $$t^{\circ}C = \frac{5}{9} (T^{\circ}F - 32)$$ You may have to convert temperatures from °C to °F or from °F to °C. So, both following equations need to be computed. $$t^{\circ}C = \frac{5}{9} (T^{\circ}F - 32) (1)$$ $$t^{\circ}F = \frac{9}{5} (T^{\circ}C + 32) (2)$$ If you want to write a program able to compute equations (1) and (2), you need to be able to go and execute the correct computation: You need to *branch* to some part of the program. The branching instructions of the TI57LCD include basically two instructions: - The "GOTO" instruction telling the calculator where the execution has to continue. - The "Label" instruction allowing to "mark" the destination location. ## LBL n - Label key sequence. This key allows you to label any point in the program memory area. This function operates only in "Learn" mode. The key sequence is LBL n, where n is any digit 0 through 9. Therefore, this lets you label up to 10 points in the program memory (Label numbers cannot be used more than once each). ## **BRANCHING INSTRUCTIONS** The key sequence LBL n is merged in one program step, with the following code: 23 • On. #### GTO n - Goto key sequence: The <u>GTO</u> n sequence has for result the positioning of the program pointer to the label number n (n is any digit 0 through 9). This key sequence can be used either as part of a program (when entered in "learn" mode), or right off the keyboard (when out of "learn" mode). During a program execution, when the program pointer encounters a ero n instruction, it goes right to label n and continues on from that point. The ero n sequence is stored as one program step, with the following code: 22 • On. Used when out of "Learn" mode, the @TO n sequence positions the program pointer to the corresponding label, thus allowing to select part of a program, but the execution wont't start until you press the RS key. Caution: If the corresponding label does not exist, the GTO n sequence will result in an error message. The GTO n sequence is called an "unconditional transfer". Now let's key the temperature conversion program. Here is how you can proceed: | Press | Displa | зу | Comments | |------------|--------|----|---| | 2nd Part 1 | 48.1 | | Set the partition to 1 data memory | | LRN 2nd CP | - | St | Enter "learn" mode and clear the program memory area. | | LBL 0 | 23.00 | 00 | Entry point for the conversion from
°Fahrenheit to °Celsius. | | | 53 | 01 | | | | 75 | 02 | | | 3 | 03 | 03 | | | 2 | 02 | 04 | | | | 54 | 05 | | | X | 65 | 06 | | | 5 | 05 | 07 | | | + | 55 | 80 | | | 9 | 09 | 09 | | | | 95 | 10 | | | R/S | 13 | 11 | End of t°C computation | | LBL 1 | 23.01 | 12 | Entry point for the conversion from
°Celsius to Fahrenheit | | X | 65 | 13 | | | 9 | 09 | 14 | | | • | 55 | 15 | | | 5 | 05 | 16 | | | | | | (Continued) | ## **CONDITIONAL TRANSFERS** | + | 85 | 17 | | (Continuation | |--------------|----|----|------------------------|---------------| | 3 | 03 | 18 | | | | 2 | 02 | 19 | | | | | 95 | 20 | | | | R/S | 13 | 21 | End of T°F computation | | | LRN RST ON/C | | 0 | | | Now you select either the conversion from degrees Fahrenheit to degrees Celsius by pressing @TO 0 or the reverse conversion by pressing @TO 1. Then you just have to enter T°F (or t°C) and press the R/S key to start the execution. #### Example: | Press | Display | Comments | |--------------|---------|---------------------------------| | ON/C ON/C | 0 | | | сто О | 0 | | | 104 R/S | 40 | (40°C are equivalent to 104 °F) | | ON/C | 0 | | | GTO 1 | 0 | | | 20 R/S | 68 | (68°F are equivalent to 20°C) | ## Section 5 - Conditional transfers. Let's consider another example: compute the cost of sending a parcel through the mail. The post office company tells you that the cost is £ 2.4 for parcels weighing less than 3 kg. Above 3 kg, the price is 0.8 £/Kg. To write a program performing these computations, you need to take a decision based on the weight of the parcel: is the weight greater or equal to 3 Kg? Your TI 57-II can take these decisions: it will perform a test, and based on the result of this test (true or false), it will act in a different way. The TI 57-II allows you to perform four different comparisons between the displayed value (named x) and the value loaded in the t-register (or test register). These four tests are: 2nd X=1 Is x = t? (Is x equal to t?) [INV] 2nd X=1 Is x ≠ t? (Is x not equal to t?) 2nd X=1 Is x≥t? (Is x greater than or equal to t?) [INV] 2nd X=1 Is x<t? (Is X less than t?) If the answer to the test is YES the program pointer goes on to the instruction immediately following the test. If the answer is NO, the program pointer skips the instruction immediately following and continues with the next one. ## **CONDITIONAL TRANSFERS** Above chart shows the structure of the decision-making instructions. The instruction following a test can be any instruction but the most useful one is the aron, allowing to branch to another part of the program (as shown on this chart). The Etc key allows to load the t-register with the number currently in the display, preparing it for a test execution. #### Example: Now let's see how we would compute our shipping cost: The mathematic equations for this problem are: - . If the weight is≥3, then the cost is: 0,8 × weight - · Otherwise, the cost is: £2.4. Here is how we can proceed. | Press | Displa | y | Comments | |--------------|--------|----|---| | ON/C ON/C | | 0 | | | 2nd Part 1 | 48. | 1 | | | LRN 2nd CP | | St | Enter "learn" mode and clear the program memory area. | | STO O | 61.00 | 00 | Save parcel weight | | 3 | 03 | 01 | The test value is 3 | | x 1 t | 51 | 02 | Load test value | | RICL O | 71.00 | 03 | Recall parcel weight | | 2nd 2 - 1 | 27 | 04 | Execute test | | GTO O | 22.00 | 05 | Go to label 0 because the weight is ≥3 Kg | | 2 | 02 | 06 | • | | • | 93 | 07 | | | | 04 | 80 | Cost of shipping = 2.4£ | | | 95 | 09 | • | | R/S | 13 | 10 | End of that part | | RST | 21 | 11 | Prepare for next computation | | LBL O | 23.00 | 12 | Go here when the weight is ≥3 kg. | | RCL 0 | 71.00 | 13 |
3 | | X | 65 | 14 | | | | 93 | 15 | | | 8 | 08 | 16 | 4 | #### CONDITIONAL TRANSFERS | | 95 | 17 | Cost of shipping = 0.8 × weight | |------|------|----|---------------------------------| | R/S | 13 | 18 | Stop execution | | RST | 21 | 19 | Prepare for next computation | | LRN | 48.1 | | | | ON/C | C |) | | | | | | | Your program is ready. To use it you just have to reset the program pointer to start the program right from the beginning. For example: computation of the shipping cost for the following weights: 5, 2.5, 3. | Press | Display | Comments | |-----------|---------|--------------------------| | ON/C ON/C | 0 | Clear pending operations | | RST | 0 | Position pointer | | 5 R/S | 4 | Cost for a 5 kg parcel | | 2.5 R/S | 2.4 | Cost for a 2.5 kg parcel | | 3 R/S | 2.4 | Cost for a 3 kg parcel | To summarize this section: The calculator can perform four kinds of tests as shown in the following table: | Key sequence | Test | Go to next step | Skip next step
if | |---------------|--|-------------------------------|----------------------| | 2nd X=t | x = t? | x = t | x≠t | | INV 2nd X=1 | x ≠ t? | x≠t | x = t | | 2nd X = t | x≽t? | x≽t | x <t< td=""></t<> | | INV 2nd X ≥ 1 | x <t?< td=""><td>x<t< td=""><td>x≽t</td></t<></td></t?<> | x <t< td=""><td>x≽t</td></t<> | x≽t | - The calculator compares the displayed value and the contents of the test register. - If the answer to the test is YES the calculator executes the following instruction. - . If the answer is NO, the next instruction is skipped, NOTE: When executed right off the key board these functions have no effect. Caution: The comparisons are done on the displayed value (eight significant digits), and not on the 11 digits included in the display register. This allows to have comparisons results in agreement with what is in the display. The full accuracy of the displayed number (11 digits) remains available for further computations. ## SUBROUTINES ## Section 6 - Subroutines In many calculations you can isolate parts that are used more than once. For example, if you want to calculate the volume of different tubes, you can compute the volume of the external cylinder (V) and the volume of the internal cylinder (v), and then calculate the difference to get the volume of the tube (Vt). We have: $V = \pi R^2 h$ (1) $V = \pi r^2 h$ (2) $Vt = \pi R^2 h - \pi r^2 h$ The equations (1) and (2) are identical except the value of the radius. In order to save program steps, there is a programming technique consisting in isolating a part of a program that will be used several times into a "mini program" called a SUBROUTINE (or subprogram). In this example, the subroutine would be a program to compute the volume of a cylinder, by the equation π x²h, where x is the radius of the cylinder. In the principal program, called "MAIN PROGRAM", any time we need to compute the volume of a cylinder we will "CALL" the subroutine, providing it with the value of the radius of the cilinder we consider. Here is how we can show the flow of the main program. - Enter the inner radius (r) - Call the subroutine computing the volume $v = \pi r^2 h$ - Save the result in memory 0. - . Enter the other radius (R) - · Call the subroutine computing the volume - · Subtract the volume of the inner cylinder. Following is a description of the subroutine capabilities of the TI 57-II. ## 2nd SBR n - Call subroutine key sequence: The <u>[and]</u> SER key sequence allows you to call a subroutine from a main program. The digit n indicates the label of the subroutine. The subroutine (or subprogram) can be located anywhere but has to start with a label. The end of the subroutine has to be marked with a special instruction: [NV] and SBR which tells the calculator that the subroutine is completed. ### **SUBROUTINES** INV 2nd SBR - Subroutine return key sequence: The <u>INV 2nd</u> SBR signals the end of a subroutine and instructs the calculator to go back to the main program. Note that INV 2nd SER will act as an R/S instruction if it is not used as part of a subroutine called with a 2nd SER instruction. The following diagram illustrates the way [2nd] SER n and INV [2nd] SER work. - When 2nd SSBn is encountered the calculator "notes" the number of the following program step. - Then the program pointer goes right to label n and starts executing the subroutine, until it meets the INV 2nd SIR instruction. - When INV 2nd SBR is encountered, the program pointer returns to the step following the subroutine call, and continues the execution. Caution: Within a subroutine, it is impossible to call another subroutine, because the TI 57-II can only note one "return" address. Therefore, if this happens, the calculator will just remember the last "return" address, the first INV 2nd SEE instruction encountered will be executed, but the calculator will stop at the next one. NOTE: The key has to be used very carefully within a subroutine, because it completes all pending operations, even those coming from the main program and it can produce results that you did not expect. #### Example: Coming back to our tube problem let's write a program to compute the volume of tubes that are $1.5\ m$ long and with variable values for R and r. ## SUBROUTINES | Press | Displa | зу | Comments | |-------------------------|--------|----|--| | ON/C ON/C | 40 | | | | 2nd Part 1 | 48.1 | St | | | LRN 2nd CP
2nd SBR 0 | 28.00 | 00 | Calculate the volume of the inner cylinder | | STO 0 | 61.00 | 01 | Save it in memory 0 | | R/S | 13 | 02 | Wait for R input | | 2nd SBR 0 | 28.00 | 03 | Calculate outer cylinder volume | | | 75 | 04 | | | RCL 0 | 71.00 | 05 | | | | 95 | 06 | Compute tube volume | | R/S | 13 | 07 | Display result and stop execution | | RST | 21 | 08 | Prepare for next calculation | | LBL | 23.00 | 09 | Start subroutine | | | 53 | 10 | | | 2 1 | 34 | 11 | Calculate the square of radius | | X . | 65 | 12 | | | | 01 | 13 | | | | 93 | 14 | Value of h | | 6 | 05 | 15 | | | | 65 | 16 | | | 2nd 77 | 49 | 17 | | | <u> </u> | 5.4 | 18 | Compute $V = \pi x^2 h$ | | INV 2nd SBR | - 28 | 19 | Return to main program | | LAN | 48. | 1 | | Now let's compute the volume of a tube for which R = 0.6m and r = 0.5 | Press | Display | Comments | |-------|-----------|--------------------------------| | RST | 0 | Position pointer for execution | | 5 | .5 | Entry of r | | R/S | 1.1780972 | Volume of internal cylinder | | • 6 | .6 | Entry of R | | R/S | 0.5183628 | Volume of the tube | ## **BUILDING LOOPS** ## Section 7 - Building loops. Iterative computations are frequently used in mathematics applications. For example if you have £275 in a saving account with an annual interest rate of 8.2%, what would be the total in your account after 5 years? After 10 years? At the end of a year, the interest accumulated are 8.5% of the starting amount, and the new total is increased by the amount of these interests payments. At the end of the first year, the value of the interests is: $$275 \times \frac{8.2}{100} = £22.55$$ The total value of your saving is now: And so on, until you reach the end of the 5 years or 10 years. Your TI 57-II allows you to repeat the same calculation a given number of times by using a special function: 2nd 000 ## 2nd Dev - Decrement and skip on zero-key sequence: This key sequence allows you to set up a repetitive calculation (or "loop") for as many times as you select. You just have to store the number of repetitions you want into memory zero, before starting the iterative calculation. When the program pointer comes to a 2nd two key sequence, here is what happens: - First, the contents of memory zero is decreased by one. - The calculator then asks: is the contents of memory zero equal to zero? - If the answer is NO, the program pointer proceeds right on to the step following [2nd] [0.2]. - If the answer is YES, the program pointer skips the following instruction and continues the execution. The instruction following the model instruction can be any instruction, but most often it will be a con instruction allowing repetitive calculations as shown in the following chart. If the contents of the register 0 is initially equal to p, the iterative calculation will be done p times, thus looping back to label $\eta_{\rm s}$. Then, when the contents of memory zero will be equal to 0 it will skip the "branching" instruction and continue the program execution (or stop as shown on the chart). #### Example: | Press | Display | , | Comments | |------------|----------|----|---| | 2nd Part 2 | 40.2 | | | | LRN 2nd CP | | St | | | STO 1 | 61.01 | 00 | Save initial capital | | R/S | 13 | 01 | Wait for number of years input | | STO 0 | 61.00 | 02 | Save number of iterations | | LEL 0 | 23.00 | 03 | Loop starting adress | | RCL 1 | 71.01 | 04 | | | X | 65 | 05 | | | | 93 | 06 | | | | 00 | 07 | | | | 08 | 08 | | | 2 | 02 | 09 | | | • | 95 | 10 | Calculate the period interests | | STO + 1 | 61.85.01 | 11 | Add them to capital | | 2nd 657 | 29 | 12 | Decrement register 0 | | GTO 0 | 22.00 | 13 | Goto label 0 if non completed | | RCL 1 | 71.01 | 14 | - Recall the final capital if completed | | R/S | 13 | 15 | Stop execution | | RST | 21 | 16 | Prepare for next program execution | | LAN ON/C | 0 | | Exit learn mode. | | RST | 0 | | Prepare for program execution | Program execution: you just have to type in the starting amount, press [NS], type in the number of years, then [NS] again. | Press | Display | Comments | | |---------|-----------|-----------------|---| | 275 R/S | 275 | Initial capital | * | | 5 | 5 | Number of years | | | R/S | 407.82045 | Final amount | | #### CONCLUSION Caution: 2nd Over decreases the contents of memory zero by one if its contents is positive. If it is negative, il will be incremented by one. If the contents of memory zero is not an integer value,
the calculator will react as if the next integer number is in memory zero. Following table shows the number of loops done by the calculator depending on the initial value stored in memory zero. | nitial Value | Number of loops | |--------------|-----------------| | 5 | 5 | | 5.2 | 6 | | 5.9 | 6 | | - 5 | 5 | | - 5.2 | 6 | | -5.9 | 6 | Since memory zero is involved whenever 2nd 05r is used, it cannot be used for other storage purposes inside the loop, but however the number in memory zero can be recalled as part of the computational sequence. INV 2nd Ov - Decrement and skip if not zero - key sequence: This key sequence works in the same fashion as 2nd 0 except that the step following this instruction is skipped if the contents of memory 0 is different from zero. So when the program pointer comes to an INV 2nd Der here is what happens: - One is substracted from the contents of memory zero (or added if the number in memory zero is negative) - Then the calculator asks: is the contents of memory zero equal to zero? - If the answer is NO, the program pointer skips the instruction immediately following the INV 2nd Dec sequence. - If the answer is YES, the program pointer proceeds right on the instruction immediately following INV 2nd Dec. Other characteristics of this function are identical to those of the 2nd Dsz instruction. ## Section 8 - Conclusion #### STEPS IN WRITING A PROGRAM: Writing a program requires a structured approach which can be summarized as follows: - 1. Study the problem, gather the equations solving it. - Determine the goals of your program: during that phase you need to define how your program will interact with you. For example, which keys you will have to press, which parameters you will have to enter #### CONCLUSION and what results will be displayed. - Draw the program flow, indicating all the phases of the execution. This can be done with a flowchart (or schematic diagram). During this step, you need also to determine what will be stored in the data memories of your TI 57-II (parameters, data). - Write down the actual program steps, keeping track of the use of the memories and of the branching labels. - 5. Enter the program into your calculator. - Test your program with test data for which you already know what the results should be, this is in order to be sure that your program is working correctly. - Edit and correct your program using the "debugging" and editing functions provided by your TI 57-II. - 8. Once your program is working, document it carefully in order to keep it for future use. This documentation should include: - The name of the program - The goal of the program - The program flow - The memory map showing the use of data memories - The complete list of the program steps including the memory partitioning required - The test data in order to verify the program - The instructions to use the program #### **DEBUGGING A PROGRAM:** If the program does not give you the expected results, here are some "tips" on how you can solve the problem: - · Check that your program has been correctly keyed in. - Execute the program step by step, with the <u>sst</u> key and compare the result of each step with what you expected. This is a good way to determine the "trouble maker" step. - Check that you use numeric labels no more than once each, and that each label you are referring to has been defined. - Check that subroutines are ended with an (INV) 2nd SER instruction. - Verify that you deal with the correct user's data memories. Do not forget that znd ssz affects the contents of the memory "zero". Check that all the user memories, you want to use, exist in the current partitioning. - Verify that you do not use more than four levels of pending operations, and that you comply to the rules of the Algebraic Operating System (AOSTM). - Verify that your calculator is set to the correct angular mode for trigonometric computations. - If an "ERROR" message is displayed, refer to the Appendix A to help you locate the problem. ## APPLICATIONS - STATISTICAL ANALYSIS ## Chapter III - Applications ## Section 1 - Statistical Analysis - This program computes the mean and the standard deviation of a set of data. - · Equations: Mean: $$\bar{x} = \sum \frac{x_i}{N}$$ Standard deviation: $\sigma_n = \sqrt{\sum \frac{(x_i - \bar{x})^2}{N}}$ · Memory map: · Example: | | | M ₂ | Mι | Мо | |------------|----|----------------|-----|----| | gram steps | | N | Σx² | Σ× | | 00 | 31 | | | | - · Running this program: - Press 2nd CM then RST - To enter data point: enter xi - press R/S - To compute statistics results: press ato 0, R/S x - Comments Press Display ON/C 2nd CM RST Display the number 1.75 R/S of observations entered 1.62 R/S 1.84 R/S 1.72 R/S 1.68 R/S 1.722 GTO O R/S 0.0733212 ## COMBINATIONS AND PERMUTATIONS · Program listing: | Keys | Code | Step # | Comments | |-----------------------|----------|--------|-------------------------------------| | 2nd Part 3 | | | | | LRN 2nd CP | | St | | | STO + 0 | 61.85.00 | 00 | Set partitioning to 3 data memories | | X ² | 34 | 01 | Enter data | | STO + 1 | 61.85.0 | 1 02 | | | 1 | 01 | 03 | | | STO + 2 | 61.85.02 | 2 04 | | | RCL 2 | 71.02 | 05 | | | R/S | 13 | 06 | | | RST | 21 | 07 | | | LBL 0 | 23.00 | 80 | Mean computation | | RCL 0 | 71.00 | 09 | | | + | 55 | 10 | | | RCL 2 | 71.02 | 11 | | | | 95 | 12 | | | R/S | 13 | 13 | | | RCL 1 | 71.01 | 14 | Standard deviation computation | | + | 55 | 15 | | | RCL 2 | 71.02 | 16 | | | | 75 | 17 | | | | 53 | 18 | | | RCL 0 | 71.00 | 19 | | | + | 55 | 20 | | | RCL 2 | 71.02 | 21 | | | | 54 | 22 | | | X ² | 34 | 23 | | | = | 95 | 24 | | | VX | 35 | 25 | | | R/S | 13 | 26 | | | LRN | | | | | | | | | ## Section 2 — Combinations and permutations - This program computes the possible combinaisons (CR) or permutations (AR) of n objects taken p at a time. - Equations: $$C_n^p = \frac{n!}{p! (n-p)!}$$ $$A_n^p = \frac{n!}{(n-p)!}$$ ## COMBINATIONS AND PERMUTATIONS #### · Memory map: | Mo | M ₁ | | | |----|----------------|---------|---------| | n | р | Progran | n steps | | | | 39 | 00 | #### · Running this program: To compute C^p_n: enter n press GTO 0 R/S enter p press R/S To compute A^p: enter n press erro 1 (R/s) enter p press (R/s) #### Example | | Press | Display | Comments | |-----------------|----------------------|---------|------------------| | C ₁₂ | 12 GTO 0 R/S | 12 | $C_{12}^3 = 220$ | | A5 | 3 R/S
8 GTO 1 R/S | | ILFI Go | | | 5 R/S | 6720 | $A_8^5 = 6720$ | #### · Program listing: | , | Press | Code | Step # | Comments | |-----|--------|-------|--------|---------------------------------------| | 2nd | Part 2 | | | Set partitioning to two user memories | | LRN | 2nd CP | | St | | | LBL | 0 | 23.00 | 00 | Cº Computation | | 2nd | BR 2 | 28.02 | 01 | | | RCL | 0 | 71.00 | 02 | | | 2nd | x! | 40 | 03 | | | + | | 55 | 04 | | | RCL | 1 | 71.01 | 05 | | | 2nd | x! | 40 | 06 | | | | | 55 | 07 | | | | BR 3 | 28.03 | 80 | | | | | 95 | 09 | | | R/S | | 13 | 10 | | | LBL | 1 | 23.01 | 11 | An Computation | | 2nd | SBR 2 | 28.02 | 12 | | ## HYPERBOLIC FUNCTIONS | RCL 0 | 71.00 | 13 | | |-------------|-------|----|-------------------------------| | 2nd X | 40 | 14 | | | + | 55 | 15 | | | 2nd SBR 3 | 28.03 | 16 | | | | 95 | 17 | | | R/S | 13 | 18 | | | LBL 2 | 23.02 | 19 | Subroutine for n and p entry | | STO 0 | 61.00 | 20 | | | R/S | 13 | 21 | | | STO 1 | 61.01 | 22 | | | INV 2nd SBR | -28 | 23 | | | LBL 3 | 23.03 | 24 | Subroutine computing (n - p)! | | | 53 | 25 | | | RCL 0 | 71.00 | 26 | | | | 75 | 27 | | | RCL 1 | 71.01 | 28 | | | | 54 | 29 | | | 2nd X | 40 | 30 | | | INV 2nd SBR | -28 | 31 | | | LRN | | | | # Section 3 — Hyperbolic functions - · This program computes the hyperbolic sine, cosine and tangent. - Equations: $\sinh x = \frac{e^x e^{-x}}{2}$ $\cosh x = \frac{e^x + e^{-x}}{2}$ $\tanh x = \frac{e^x e^{-x}}{e^x + e^{-x}}$ - · Memory map: | Мо | Mı | | | |----|-----------|--------|---------| | x | cosh
x | Progra | m steps | | | | 39 | 00 | #### HYPERBOLIC FUNCTIONS Comments #### · Running this program: To compute cosh x: enter x press $\overline{\text{GTO}}$ $\overline{\text{O}}$ $\overline{\text{R/S}}$ \rightarrow $\cosh x$ sinh x: enter x • press GTO 1 R/S - sinh x tanh x: enter x press GTO 2 R/S → tanh x #### Example: | | | Press | Display | |------------|---|---------------|-----------| | cdsh (3.2) | : | 3.2 GTO 0 R/S | 12.286646 | | sinh (8.1) | : | 8.1 GTO 1 R/S | 1647.2339 | | tanh (0.5) | : | .5 GTO 2 R/S | 0.4621172 | Step # ## Program listing: Press | | St | | |-------|--|---| | 23.00 | 00 | Compute cosh x | | 61.00 | 01 | | | - 32 | 02 | Datamath | | 85 | 03 | | | 71.00 | 04 | | | 94 | 05 | | | - 32 | 06 | | | 95 | 07 | | | 55 | 80 | | | 02 | 09 | | | 95 | 10 | | | - 28 | 11 | | | 23.01 | 12 | Compute sinh x | | 61.00 | 13 | | | - 32 | 14 | | | 75 | 15 | | | 71.00 | 16 | | | 94 | 17 | | | - 32 | 18 | | | 95 | 19 | | | 55 | 20 | | | 02 | 21 | | | 95 | 22 | | | - 28 | 23 | | | | 61.00 - 32 85 71.00 94 - 32 95 55 02 95 - 28 23.01 61.00 - 32 75 71.00 94 - 32 95 55 02 95 | 23.00 00 61.00 01 - 32 02 85 03 71.00 04 94 05 - 32 06 95 07 55 08 02 09 95 10 - 28 11 23.01 12 61.00 13 - 32 14 75 15 71.00 16 94 17 - 32 18 95 19 55 20 02 21 95 22 | ## INVERSE HYPERBOLIC FUNCTIONS | LBL 2 | 23.02 | 24 | Compute tanh x | |-----------|-------|----|--------------------------| | 2nd SBR 0 | 28.00 | 25 | •••••••••••••••••••••••• | | STO 1 | 61.01 | 26 | | | RCL 0 | 71.00 | 27 | | | 2nd SBR 1 | 28.01 | 28 | | | + | 55 | 29 | | | RCL 1 | 71.01 | 30 | | | = | 95 | 31 | | | R/S | 13 | 32 | | | LRN | | | | ## Section 4 - Inverse hyperbolic functions - This program computes the following functions: sinh⁻¹ x, cosh⁻¹ x,
tanh⁻¹ x. - Equations: $\sin h^{-1} x = \operatorname{Ln} (x + \sqrt{x^2 + 1})$ $\cos h^{-1} x = \operatorname{Ln} (x + \sqrt{x^2 - 1}), \quad x \ge 1$ $\tan h^{-1} x = \frac{1}{2} \operatorname{Ln} (\frac{1 + x}{1 - x}), \quad -1 < x < 1$ - · Memory map: #### · Running this program: Enter x then press GTO 0 R/S to compute cosh⁻¹ x or press GTO 1 R/S to compute sinh⁻¹ x or press GTO 2 R/S to compute tanh⁻¹ x ## • Examples: | | | Press | Display | |----------------|---|---------------|-----------| | cosh-1 (6.2) | : | 6.2 GTO 0 R/S | 2.5111285 | | sinh-1 (3.7) | : | 3.7 GTO 1 R/S | 2.0192607 | | tanh - 1 (0.5) | : | .5 GTO 2 R/S | 0.5493061 | ## **INVERSE HYPERBOLIC FUNCTIONS** · Program listing: | • Program listi | ng: | | | |-----------------------|-------|--------|------------------------------| | Press | Code | Step # | Comments | | 2nd Part 1 | 48 | B.1 | | | LRN 2nd CP | | St | | | LBL 1 | 23.01 | 00 | Compute sinh ⁻¹ x | | STO 0 | 61.00 | 01 | | | X2 | 34 | 02 | | | + | 85 | 03 | | | 1 | 01 | ' 04 | | | = | 95 | 05 | | | √ ₹ | 35 | 06 | | | + | 85 | 07 | | | RCL 0 | 71.00 | 08 | | | - | 95 | 09 | | | inx | 32 | 10 | | | R/S | 13 | 11 | | | LBL 0 | 23.00 | 12 | Compute cosh ⁻¹ x | | STO 0 | 61.00 | 13 | | | X ² | 34 | 14 | | | _ | 75 | 15 | | | 1 | 01 | 16 | | | | 95 | 17 | | | VX | 35 | 18 | | | + | 85 | 19 | | | RCL 0 | 71.00 | 20 | | | | 95 | 21 | | | Inx | 32 | 22 | | | R/8 | 13 | 23 | | | LBL 2 | 23.02 | 24 | Compute tanh ⁻¹ x | | STO 0 | 61.00 | 25 | | | + | 85 | 26 | | | 1 | 01 | 27 | | | | 95 | 28 | | | + | 55 | 29 | | | | 53 | 30 | | | 1 | 01 | 31 | | | | 75 | 32 | | | RCL 0 | 71.00 | 33 | | | | 54 | 34 | | | | 95 | 35 | ·é | | inx | 32 | 36 | | | + | 55 | 37 | | | 2 | 02 | 38 | | | | | | | ## **QUADRATIC EQUATIONS** | | 95 | 39 | |-----|----|-----| | R/S | 13 | 40 | | LRN | 48 | 3.1 | ## Section 5 — Quadratic equations - This program solves the equation: ax² + bx + c = 0 (a≠0) - Equations: $$\Delta = b^{2} - 4ac$$ $$1. \quad \Delta > 0 \qquad x1 = \frac{-b - \sqrt{\Delta}}{2a}$$ $$x2 = \frac{-b + \sqrt{\Delta}}{2a}$$ 2. $$\Delta = 0$$ $x1 = x2 = \frac{-b}{2a}$ 3. $$\Delta < 0$$ no root belonging to \mathbb{R} , 2 complex roots $z1 = \alpha + j \beta$ $z2 = \alpha - j \beta$ with $$\alpha = \frac{-b}{2a}$$ and $\beta = \frac{-\sqrt{-\Delta}}{2a}$ Memory map | Мо | M ₁ | | | |----|----------------|--------|---------| | а | b | Progra | m steps | | | | 39 | 00 | ## Program listing | - | Press | Code | Step # | | Comments | |------------|--------|-------|--------|--------------|----------| | 2nd | Part 2 | | | | 1.40 | | LRN 2 | end CP | | St | | | | 2nd | Cit | 56 | 00 | | | | STO | 1 | 61.01 | 01 | Save b value | | | X 2 | | 34 | 02 | | | | | | 75 | 03 | | | | R/S | | 13 | 04 | Get c value | | | X | | 65 | 05 | | | | 4 | | 04 | 06 | | | ## QUADRATIC EQUATIONS | | C.F. | 07 | (Continuation | |-------------|-------|-----|----------------------------------| | X | 65 | 08 | Continuation | | RCL 0 | 71.00 | | | | | 95 | 09 | Display A | | R/S | 13 | 10 | Display A | | INV 2nd X≥1 | - 27 | 11 | Test sign of ∆ | | GTO 1 | 22.01 | 12 | . >0 | | VX | 35 | 13 | . Δ ≥0 | | + | 85 | 14 | | | RCL 1 | 71.01 | 15 | | | | 95 | *16 | | | 2nd SBR 0 | 28.00 | 17 | | | R/S | 13 | 18 | Display x1 | | +/- | 94 | 19 | | | | 75 | 20 | b | | RCL 1 | 71.01 | 21 | Note: $x^2 + x^1 = -\frac{b}{a}$ | | + | 55 | 22 | | | ACL 0 | 71.00 | 23 | | | = | 95 | 24 | | | R/S | 13 | 25 | Display x2 | | LBL 1 | 23.01 | 26 | Compute complex roots | | +/- | 94 | 27 | | | √ ₹ | 35 | 28 | . ∆ < 0 | | 2nd SBR 0 | 28.00 | 29 | Display β Math Cal | | R/S | 13 | 30 | Display β | | RCL 1 | 71.01 | 31 | | | LBL 0 | 23.00 | 32 | | | + | 55 | 33 | | | 2 | 02 | 34 | | | + | 55 | 35 | | | RCL 0 | 71.00 | 36 | | | | 95 | 37 | | | +/- | 94 | 38 | | | INV 2nd SBR | - 28 | 39 | Display α | | LRN | | | | | | | | | ## · Running this program: Enter a, then press STO O Enter b, then press RST R/S Enter c, then press R/S → Δ 1 If Δ≥0, press R/S → x press R/S → x 2 If Δ<0, press R/S → β press R/S → β ## **FUNCTION PLOTTER** #### • Examples: | 2x + 5 = 0
Press | Display | Comments | |----------------------------|--------------|--| | STO 0 | 1 | | | H/- RST R/S | 4 | | | R/S | -16 | Δ is <0, z1 and z2 are complex numbers | | R/S | - 2 | | | R/S | 1 | $\beta_{i}z1 = 1 - 2j$ $\alpha_{i}z2 = 1 + 2j$ | | x - 6 = 0 | | | | Press | Display | Comments | | STO 0 | 1 | | | RST R/S | 1 | | | +/- R/S | 25 | Δ is >0, x1 and x2 are real numbers | | R/S | - 3 | x1 = -3 | | R/S | 2 | x2 = 2 | | | Press STO 0 | Press Display STO 0 | ## Section 6 - Function plotter - This program computes the values of a function in a given interval. The function to plot has to be entered as a program under label 0 and has to be followed by INV [2nd] SSR - Equations: F(x) is computed for x varying from a to b with step c. ### · Memory map: | Мо | Mı |] | | | | |-----|----|-----------------|----------|------|------| | a c | С | F(x) definition | finition | prog | gram | | | | 39 | 19 | 18 | 00 | ## · Running this program: Once F(x) has been entered in the program memory: - enter a, press RST , R/S - enter b, press R/S - enter c, press R/S ### **FUNCTION PLOTTER** #### · Example: - Set calculator to degrees mode with the DRG key. - Calculate $f(x) = e^{\sin x}$ for x varying from 0 to 180°, with a 10° step. | Press | Display | Comments | |-----------|-----------|----------| | O RST R/S | 0 | а | | 180 R/S | 180 | b | | 10 R/S | 0 | × | | | 1 | f(x) | | | .10 | x | | | 1.189637 | f(x) | | | 20 | × | | | 1.4077887 | f(x) | #### · Program listing: | Press | Code | Step # | Comments | |-------------|-------------|--------|--------------------------------------| | 2nd Part 2 | | | | | LRN 2nd CP | | St | | | STO 0 | 61.00 | 00 | | | R/S | 13 | 01 | | | x i t | 51 | 02 | | | ON/C | 15 | 03 | | | R/S | 13 | 04 | | | STO 1 | 61.0 | 1 05 | | | RCL 0 | 71.00 | 06 | | | LBL 1 | 23.0 | 1 07 | | | 2nd Pause | 96 | 80 | | | SBR 0 | 28.0 | 0 09 | Call subroutine computing f(x) | | 2nd Pause | 96 | 10 | | | RCL 1 | 71.0 | 1 11 | | | STO + 0 | 61.8 | 5.0012 | | | RCL 0 | 71.0 | 0 13 | | | INV 2nd X≥1 | - 27 | 14 | | | GTO 1 | 22.0 | 1 15 | | | 2nd X=t | 26 | 16 | | | GTO 1 | 22.0 | 1 17 | | | R/S | 13 | 18 | | | LBL 0 | 23.0 | 0 19 | Function definition | | sin | 42 | 20 | (can use up to 21 steps) | | INV Inx | -32 | 21 | In this example: $F(x) = e^{\sin x}$ | | INV 2nd SBR | -28 | 22 | | | LRN | | | | ## LIMIT OF A FUNCTION ## Section 7 - Limit of a function This program is designed to evaluate the behaviour of a function (f(x)) as its variable approaches some specific value. In some cases the function may "diverge" or "go to infinity" right at the limit point or it may converge to a specific limit value. #### • Equations: Compute lim f(x). $x \rightarrow x0$ F(x) is evaluated for values of x that move from x1 to x0, such as $xn = \frac{xn-1 + x0}{2}$, thus halving the distance from x to x0 at each iteration. #### Memory map: | i | Мо | M ₁ | | | | | |---|----|----------------|--------|---------|------|------| | | x | ×o | F(x) E | quation | Prog | gram | | | | | 39 | 15 | 14 | 00 | ### · Running this program: Once f(x) has been entered in the program memory enter x0, press (RST), (R/S) enter x1, press R/S This program will run indefinitely. Hold R/S down to stop its execution. ## • Example: Evaluate the limit of $f(x) = \frac{Lnx}{x-1}$ for x approaching 1. | Press | Display | | |-----------|-----------|----------| | | Display | Comments | | 1 RST R/S | 1 | ×O | | 2 (R/S) | 2 | x1 | | | 0.6931472 | f(x1) | | | 1.5 | x2 | | | 0.8109302 | f(x2) | | | 1.25 | x3 | | | 0.8925742 | f(x3) | | | | etc | As you watch the display you will notice that when x approaches 1, the limit of f(x) approaches 1. ## HI-LO GAME | • | Program | listing | |---|---------|---------| |---|---------|---------| | Press | Code St | ер# | Comments | |-------------|---------|-----
--| | 2nd Part 2 | | | | | LRN 2nd CP | | st | Transaction of Control of the Control of Con | | STO 1 | 61.01 | 00 | Limit point | | R/S | 13 | 01 | Get starting point (x1) | | LBL 1 | 23.01 | 02 | | | STO 0 | 61.00 | 03 | | | 2nd SBR 0 | 28.00 | 04 | Call subroutine computing f(x) | | 2nid Pause | 96 | 05 | Display f(x) | | RCL 0 | 71.00 | 06 | | | + | 85 | 07 | | | RCL 1 | 71.01 | 80 | | | | 95 | 09 | | | + | 55 | 10 | | | 2 | 02 | 11 | | | | 95 | 12 | Calculate next value of x (xn) | | 2nd Pause | 96 | 13 | Display x | | GTO 1 | 22.01 | 14 | Go back to next iteration | | LBL 0 | 23.00 | 15 | Subroutine computing f(x) | | Inx | 32 | 16 | | | · 🗭 | 55 | 17 | (can use up to step # 39) | | | 53 | 18 | Dalaman, C | | RCL 0 | 71.00 | 19 | in this example, $f(x) = \frac{Lnx}{x-1}$ | | | 75 | 20 | | | 1 | 01 | 21 | | | | 54 | 22 | | | | 95 | 23 | | | INV 2nd SBR | -28 | 24 | | | LRN | | | | ## Section 8 - HI-LO Game How many guesses will it take to you to discover a "secret" number between 0 and 1000? After each guess, you are told whether your guess was "high" or "low". ## HI-LO GAME | Press | Display S | Step # | Comments | |--------------|-----------|--------|-----------------------------------| | | | | | | 2nd Part 2 | | | | | LRN 2nd CP | | St | | | 2nd CM | 76 | 00 | | | + | 85 | 01 | | | 2nd T | 49 | 02 | | | = | 95 | 03 | | | yx | 45 | 04 | | | 8 | 08 | 05 | | | = | 95 | 06 | | | 2nd Frac | 59 | 07 | Generate a pseudo random | | X | 65 | 08 | number y such as | | 3 | 03 | 09 | = INT (103 x FRAC [(π + x)8] | | INV log | - 31 | 10 | x being the number introduced. | | = | 95 | 11 | g and member introduced. | | 2nd Intg | 58 | 12 | | | XIt | 51 | 13 | | | ON/C | 15 | 14 | | | LBL | 23.00 | 15 | | | = | 95 | 16 | | | R/S | 13 | 17 | Enter guess | | STO | 61.00 | 18 | Liner guess | | 1 | 01 | 19 | | | STO + 1 | 61.85.0 | | Increment number of tries | | RCL 0 | 71.00 | 21 | more mention ber of thes | | 2nd X=t | 26 | 22 | Is the guess correct? | | это з | 22.03 | 23 | is the guess confect? | | INV 2nd X≥1 | - 27 | 24 | | | 3TO 2 | 22.02 | 25 | . no - too high | | 1 | 01 | 26 | . No - too nigh | | 310 0 | 22.00 | 27 | | | LBL 2 | 23.02 | 28 | . no - too low | | 1 | 01 | 29 | . 110 - 100 10W | | - | 94 | 30 | | | TO 0 | 22.00 | 31 | | | LBL 3 | 23.03 | 32 | . ves - it is correct | | CL 0 | 71.00 | 33 | Recall the correct guess | | and Pause | 96 | 34 | necal the correct guess | | RCL 1 | 71.01 | 35 | Recall the number of tries | | | 96 | | necall the number of tries | | and Paule | | 36 | | | RN 3 | 22.03 | 37 | | #### **ERROR CONDITIONS** - . To play the game: - Press , then enter the time of the day and the number of the day (or any positive number less than 1). - Press RST, R/S the calculator displays a "O", telling you it's ready to play. - Now enter your guess and press R/S - If your guess is "high" a "1" is displayed - If it is low, a "-1" is displayed. - If your guess is right, the calculator displays alternatively the correct number and the number of tries it took you to get it. - To guess again, enter your new number and press [R/S] - After you guessed correctly, you can restart a new game by pressing R/S RST and re-entering a new seed. - Example: | Press | Display | Comments | | | |---------------|----------|----------|--|--| | .222312 (RST) | 0.222312 | | | | | R/S | 0 | | | | | 500 R/S | 1 | | | | | 300 R/S | - 1 | | | | | 400 R/S | -1 | | | | | 450 R/S | 1 | | | | | 425 R/S | - 1 | | | | | 434 R/S | 434 | | | | | | 6 | | | | ## Appendix A - Error conditions The following list the circumstances which cause "error" to be displayed. When this occurs, no entry from the keyboard except of is accepted until one is pressed. Presing owc clears the error condition and all pending operations. When the error occurs in a program, the program pointer points to the instruction following the one which caused the error, except for branching errors which bring the program pointer back to the program starting location. The analysis of the causes of the error will allow you take appropriate action to correct it. - 1. Number entry or calculation result (including in memories) is outside the range \pm 1 \times 10⁻⁹⁹ to \pm 9.9999999 \times 10⁹⁹. - Multiplying a number greater than 1 × 10⁹⁹ by another number may cause an error condition. ## **ACCURACY INFORMATION** - 3. Dividing a number by zero. - Calculating log, lnx, or vx or zero, calculating the 0th root of any number or zero to the zero power. - 5. Calculating log, lnx, a power or root of a negative number. - Inverse of sine or cosine (arcsine or arccosine) when the absolute value in the display is greater than 1. - Tangent of 90° or 270°, π÷2 radians or 3π÷2 radians, 100 grads or 300 grads, or their rotational multiples such as 450°. - Having more than 15 open levels of parentheses or more than 4 pending operations. - 9. Factorial of any number except a non-negative integer less than 70. - 10. Trying to set the memory partitioning to 0, 8 or 9 data memories. - Using RCL, STO, or EXC for a memory that is not defined by the current partition. - When using memory arithmetic, following sto with two memory arithmetic operations and a valid user data memory number. - When using memory arithmetic, following RCL or EXC with an operation instead of a valid user data memory number. - Pressing (IRN), (SST), (R/S) when no program steps are available. (calculator set to partition with 7 data memories). - 15 Using GTOn or 2nd SBR n with an unexisting label n definition. - 16. Using an argument outside the range given in Accuracy Information (see Appendix B) for the logarithmic and trigonometric functions. ## **Appendix B: Accuracy Information** #### **Accuracy Information** Each calculation produces an 11-digit result which is rounded to an 8-digit standard display. The 5/4 rounding technique used adds 1 to the least significant digit in the display if the next nondisplayed digit is five or more. If this digit is less than five, no rounding occurs. In the absence of these extra digit, inaccurate results would frequently be displayed, such as $1 \div 3 \times 3 = 0.99999999$ Because of rounding, the answer is given as 1, but is internally equal to 0.9999999999. The higher order mathematical functions use iterative calculations. The cumulative error from these calculations in most cases is maintained beyond the 8-digit display so that no inaccuracy is displayed. Most calculations are accurate to \pm 1 in the last displayed digit. There are a few instances in the solution of higher order functions where display accuracy begins to deteriorate as the function approaches a discontinuous or undefined point. For #### **ACCURACY INFORMATION** example, the tangent of 87° is accurate for all displayed digits. However, the tangent of 89.99999° is accurate to only three places. Another example is when the y^x function has a y value that approaches 1 and an x value that is a very large positive or negative number. The displayed result for 1.05^{-160} is accurate for all displayed digits, while 1.0000005^{-16000} is accurate to only five places. Trigonometric values can be calculated for angles greater than one revolution. As long as the trigonometric function result is displayed in normal form rather than in scientific notation, all displayed digits are accurate for any angle from $-36,000^{\circ}$ to $36,000^{\circ}$ and -40,000 to 40,000 grads. The equivalent range in radians ($\pm\,200\,\pi$) is comparable to degrees and grads in accuracy except at rotation multiples of π and $\pi\div\,2$. The rounded value of π limits accuracy at these points. In general, the accuracy decreases one digit for each decade outside this range. ## **B-2** — Accuracy Information The following gives the limits within which the display must be when calculating certain functions. | Function | Limit | |------------------
---| | sin-1 x, cos-1 x | $-1 \le x \le 1$ | | | x=0 | | In x, log x | $1 \times 10^{-99} \le x < 1 \times 10^{100}$ | | ex | $-227.95592 \le x \le 230.25850$ | | 10 ^x | $-99 \le x < 100$ | | x! | $0 \le x \le 69$ where x is an integer | The following gives the range of results of the inverse trigonometric functions. | Arc Function | Range of Resultant Angle | | | |--------------|--|--|--| | arcsin x | 0 to 90°, $\pi \div 2$ radians, or 100G | | | | arcsin -x | 0 to -90° , $-\pi \div 2$ radians, or -100 G | | | | arccos x | 0 to 90°, $\pi \div 2$ radians, or 100G | | | | arccos -x | 90° to 180°, π ÷2 to π radians, φ s 100G to 200G | | | | arctan x | 0 to 90°, $\pi \div 2$ radians, or 100G | | | | arctan -x | 0 to -90° , $-\pi \div 2$ radians, or -100 G | | | ## KEYCODES IN NUMERIC ORDER # Appendix C - Keycodes in numeric order | 00
01
02
03
04
05
06
07
08
09
13
15
21
22.0n
23.0n
26
27
28.0n
29
31
32
33
34
35
40
41
42
43
44
45
46
47
48
49
50
50
51 | O 1 2 3 4 5 6 7 8 9 RXS ON/C RST GTO Ind X=1 And SBR And Ov: Log Inx And PXR | | |---|---|--| | 51
52 | ZI t | | | | | | | 53 | | |----------|---------------| | 54 | H | | 55 | + | | 56 | 2nd C.t | | 57.0n | 2nd Fix | | 58 | 2nd Intg | | 59 | 2nd Frac | | 61.0n | STOn | | 61.45.On | STO Y | | 61.55.0n | STO + | | 61.65.0n | STO X | | 61.75.0n | STO - | | 61.85.0n | STO + | | 65 | X | | 71.0n | RCLIN | | 75 | | | 76 | 2nd CM | | 81.0n | EXC n | | 85 | + | | 93 | $\overline{}$ | | 94 | +/- | | 95 | | | 96 | 2nd Pause | | | ALL PROPERTY | # SUMMARY OF CLEARING KEYS SERVICE AND WARRANTY INFORMATION ## Appendix D: Summary of clearing keys | Key
pressed | Display digits | Pending operations | Fixed decimal | User data memories | Program | t-Register | |----------------|----------------|--------------------|---------------|--------------------|---------|------------| | ON/C | Cleared | None | None | None | None | None | | ON/C ON/C | Cleared | Cleared | None | None | None | None | | OFF ON/C | Cleared | Cleared | Cleared | None | None | None | | 2nd CM | None | None | None | Cleared | None | None | | 2nd CP | None | None | None | None | Cleared | None | | 2nd C.t | None | None | None | None | None | Cleared | ## In case of Difficulty In the event that you have difficulty with your calculator, the following instructions will help you to analyse the problem. You may be able to correct the calculator problem yourself without returning the unit to a service facility. #### A. Self service 1. Problem: Calculator gives erroneous answers or displays "Error" Remedy: Check the paragraphs on error conditions, accuracy information or the paragraphs of the manual describing the functions used during your calculations. Re-initialize the calculator using the following key sequence: ON/C ON/C 2nd Part 7 2nd CM 2nd C.t 2nd Part 1 ON/C 2. Problem: The display is blank, shows erratic numbers, or grows dim. Remedy: The batteries may be discharged. Insert new batteries, following the instructions in the paragraph "Battery Replacement". 4. Problem: The "RUN" indicator is on and the display shows a steady zero or flashing numbers. Remedy: You calculator is running a program. Wait for a few moments until calculation is completed or press (R/S) or press (OFF) (R/C) and eventually reinitialize your calculator. #### B. Assistance: If the above remedies do not correct the difficulty, please contact your retailer. ## SERVICE AND WARRANTY INFORMATION ## **Battery Replacement** NOTE: The calculator cannot hold data in its users data memories or mode registers when the batteries are removed or become discharged. The calculator uses 2 of any of the following batteries for up to 750 hours of operation: Panasonic LR-44, Ray-O-Vac RW-82, Union Carbide (Eveready) A-76 or the equivalent. For up to 2000 hours of operation use Mallory 10L-14 or D357, Union Carbide (Eveready) 357, Panasonic WL-14, Toshiba G-13, Ray-O-Vac RW-42 or the equivalent. - Turn the calculator off. Place a small screwdriver, paperclip, or other similar implement into the slot and gently lift the battery cover. - Remove the discharged batteries and install new ones as shown. Be careful not to crease the film contacts while installing the new batteries. Be sure the film contacts are positioned to lie on top of the batteries after they are installed. - Replace the cover, top edge first, then gently press until the bottom edge snaps into place. - Press ON/C ON/C 2nd Press on 7 2nd 2nd C1 2nd C1 2nd 10 0N/C. The display then shows 0 and is ready to be used. CAUTION: Do not incinerate the old batteries. ## SERVICE AND WARRANTY INFORMATION ## TWO-YEAR WARRANTY In case of breakdown or damage, please consult your local Texas Instruments retailer. - The terms and conditions set out hereinunder shall not apply where you have purchased this calculator directly from Texas Instruments Ltd. in which case the conditions of sale of Texas Instruments Ltd. shall apply. - 2. This electronic calculator (including charger if applicable) from Texas Instruments is warranted to the original purchaser for a period of two (2) years from the original purchase date -under normal use and service against defective materials or workmanship. For those calculators designed to incorporate batteries, this warranty does not cover damage resulting from any battery leakage. Batteries delivered with calculators are for demonstration purposes only. This warranty is void if: the calculator has been damaged by accident or unreasonable use, neglect, improper service or other causes not arising out of defects in material or workmanship. During the above two-year period, the calculator or its defective parts will be repaired, adjusted and/or replaced with a reconditioned model of equivalent quality, ("RECONDITIONED") at manufacturer's option without charge to the purchaser when the calculator is returned, by way of the dealer to Texas Instruments with proof-of-purchase date. UNITS RETURNED WITHOUT PROOF-OF-PURCHASE DATE WILL BE REPAIRED AT THE SERVICE RATES IN EFFECT AT THE TIME OF RETURN. In the event of replacement with a reconditioned model, the replacement unit will continue the warranty of the original calculator product or 90 days, whichever is longer. THIS CONDITION 2 SHALL NOT AFFECT THE STATUTORY RIGHTS OF A CONSUMER AS DEFINED IN THE CONSUMER TRANSACTIONS (RESTRICTIONS ON STATEMENTS) ORDER 1976 (AS AMENDED). - 3. Save as expressly provided in Condition 2, Texas Instruments shall be under no liability of whatsoever kind, howsoever caused whether or not due to the negligence or wilful default of Texas Instruments or its servants or agents arising out of or in connection with this calculator provided that nothing contained in this condition 3 shall exclude or restrict: - Any liability of Texas Instruments for death or personal injury resulting from the negligence of Texas Instruments or its servants or agents; or - (III) Any liability of Texas Instruments for loss or damage arising from this calculator proving defective while in consumer use (within the meaning of Sec. 5 (2) (A) Unfair Contract Terms Act. 1977) and resulting from the negligence of Texas Instruments or its servants or agents. ## SERVICE AND WARRANTY INFORMATION - 3. Save as expressly provided in Condition 2, Texas Instruments shall be under no liability of whatsoever kind, howsoever caused whether or not due to the negligence or wilful default of Texas Instruments or its servants or agents arising out of or in connection with
this calculator provided that nothing contained in this condition 3 shall exclude or restrict: - Any liability of Texas Instruments for death or personal injury resulting from the negligence of Texas Instruments or its servants or agents; or - (II) Any liability of Texas Instruments for loss or damage arising from this calculator proving defective while in consumer use (within the meaning of Sec. 5 (2) (A) Unfair Contract Terms Act. 1977) and resulting from the negligence of Texas Instruments or its servants or agents. #### SUGGESTIONS Because of the number of suggestions which come to Texas Instruments from many sources, containing both new and old ideas, Texas Instruments will consider such suggestions only if they are freely given to Texas Instruments. It is the policy of Texas Instruments to refuse to receive any suggestions in confidence. Therefore, if you wish to share your suggestions with Texas Instruments, or if you wish us to review any calculator program key sequence which you have developed, please include the following in you letter: "All of the information forwarded herewith is presented to Texas Instruments on a nonconfidential, nonobligatory basis; no relationship, confidential or otherwise, expressed or implied, is established with Texas Instruments by presentation. Texas Instruments may use, copyright, distribute, publish, reproduce, or dispose of the information in any way without compensation to me". © 2010 Joerg Woerner Datamath Calculator Museum PRINTED IN ITALY IMPRIME EN ITALIE