TEXAS INSTRUMENTS
TI-66 PROGRAMMABLE

SOURCEBOOK

KEY INDEX [OF ION]

[A7]
312
1Al
312

[2nd]
26

ltogl
2-14
[inx]
2-14

[Part]
4-29
[LRN]
4.58

[Dsz]
468
[RIS)
4-58

14 14
el ol K] [CSR] [CMs]
3125 312 %12 312 4-44 27
(8] lcl [D] [E] lEE} [«] {11 I8l oW
312 312 312 312 29 24 24 2.2 22

lindl [Exel [Prdl [sin] [cos] [tan] [Degl
473 27 28 215 215 215 215

linvl IsTOl [RCL] I[sum] [7] (8] [9] (=]

26 27 2.7 28 59 29 2.2 2.3

lintgl [[X] [z+] Ip=Rl [DOMS-DDI [n] [Rad]
426 428 446 444 217 216 22 2-15
fuxl el vxl Iyl [4] [s) 6] Ix]

212 212 212 243 22 22 2:2 2-3

[Dell [Nopl [x=t] [CP] I[Fix] [Eng]l [Grad]

36 353 | \4870CK3 Ve 210 215
[BST] [SST] [oP] =t}) [2] [al [-] [=]
463 463 438 440 22 22 2-2 2-3 2-
[Pause] [ItF] [StFl [xat] [Adv]l [Pri] [List] [Tracel
459 471 471 467 53 52 5-4 55
[RST] [GTOl I[SBRl [LBL] [0} i [+1-] [+]

453 466 326 311 22 22 22 23

Refer to Appendix A and the inside back
cover for service and warranty information.

IMPORTANT

Record the serial number from the bottom of the unit and the
purchase date in the space below. The serial number is
identified by the words “SERIAL NO.” on the bottom case.
Always reference this information in any correspondence.

T1-66 PROGRAMMABLE
Model No. Serial No. Purchase Date

Texas Instruments resarves the right to make changes in materials and spacilicalions withoul notice.

TEXAS INSTRUMENTS
TI-66 PROGRAMMABLE

MANUAL

SIAIMUTTN 2AG

Kenneth E. Heichelheim

Robert E. Whitsitt, Il
With contributions by: J A U M m .
: i
Danny Srader
2010 dJoekg Woe
‘.‘f| nAa Caleil ¢ A

This book contains material from the earlier Tl manual, Personal
Programming. Copyright © 1977 by Texas Instruments Incorporated.

Copyright ©) 1983 Texas Instruments Incorporated
1]

TABLE OF CONTENTS

Ghapter. ¥ GETTING ACQUAINTED SMINMASSIONA £ 11
BRIRIGIION ... oo oneiioniinisin inerarinunmiminnesi SREIDONS. £ Dol Poe L. 00 1-1
The. Simplicity, of Programmingo e DR S 8. 0084 12
EARREOR OF TRIBBODKcvviiivmidismninnimmmsBng bl noes 13
el P S RS OIS SO AR ¢\ |7,y g g e 1-4
YR 0L CDOFRHONSc.ivin i, - RGO S.00008 IR 2 O 15

Calculations From the Keyboard.......... ;oo v, vins 15
Writing Your Own Programs—An Example0ooie e, 16
Printing: Capabilitiassngel naibioa@aat]. a0l o selomasdeef con 1-7

Chapter 2 GUIDED TOUR of the Features And Functions 21

BAYRORI BRI ... oo iiinss s s RDMR. .01 20813 22
Clearing the Display—ICEl, ICLR cuiaooinbi, tanieh v il 0opg 22
Data. Entry Keys—i0l—0k £ .1 be ikl o o0y e o it o 22
Basic Operation Keys—[+) [=], [xL[+) =)oo ... 0. 23
The AQSEntry Method esas ool ssupbsteal gmmesas 23
FaronthesesiKays—I (L L)) ... 2mepa@ alomaR <l oo 24
Alternate Function Keys—I2nd], INV] coooii i 26
Memory Keys—ICMsl, [Partl, [STOI, [RCL), [Exe]l 26
Memory Arithmetic Keys—ISUM], IPrd]0... 28

BRPUNOIIRIN. . ot s e A N T e 28
Standard Display) (31000 de v LN yars ek 1o 2 AT bas 28
Scientific Notation Key—IEEl2¢0000000 4. 29
Engineering Notation Key—l[Engl/ ol b v 2-10
FixDecimal ORmEob=slFlxccnmos ammmas 2R UST. 0180 21

Algabralc PUnctions ... Vs srwsen e Znsianadenad) . onksetd 212
Square, Square Root, Reciprocal Keys-—[xii BEL 5. atsmans 212
PoMersanth Boots —lpl s e e R IRIOT alon() 213
Logarithms =Dl iBogl < v iinnm o ovwnns POHBIM 2iliinsiofs ¢ 2-14
Angle Mode Keys—I[Degl, [Radl, [Grad]0.00.0.... 215
Trigonometric Keys—Isinl, lcosl, tan]ol covomiiiil.. 2-15

BONIBIIONS . . <. cosnoi im0 . 2e0dR yolapeills. . 216
Degree Format Conversion—IDMS:DD] Loius 2-16
PolariRectangular Conversions—IP»R]0oo 0o oo 217

StatisticabbFunctions ... bovtald soind mpleye pollemeQ. disdenl 218
Mean, Variance, and Standard Deviation 0. .00 00, 219
Linear. Regression .2ezndinawsf diw nollswmn0 ool wdmuid . . 219

TABLE OF CONTENTS

Chapter 3 PROGEBAMMING J2TABLOOCA PRIV 2o 31
LOSBON 1—5S10NNG B PIOOIAM icoiiisiionomisisione oioe s by 31
LABAON E=EaRING . i et SIBONDBSEIOTE) 0 e MU0 - 35
LOUNON 3—LRBRMIEo e s GRS IR 10 OB 311
LOBRON B-TRBOBIBES - o-ooisio mariancy msisinamaninpin e asvinesvass i ets VAT 3-16
Lasson S—Pianning a Programo SOGHS A0 1D, 200 321
LAsson B—Subroutings Jnaoed sl e d. sooiindualal 3-25
Lesson 7—Decision Making vt i et aiie 331
Lesson 8—Examples of the Three Decision Types............... 335

R T D o S N 3-35
The DSZ Conditional: Transfer ... oo wuil Jo AULL AU E S W 3-36
FIOEE I8 PRODERAM . . st wiipsss s Rri bS5 BISOM 3-38
Lesson 9—Indirect Addressing. il ol oo, 341
Lesson 10—Program Optimization. 0o cuidoiuiaiua 3-45
Sevich Charge Programh.!« | .Lx ! J-L e lecond oninreg slasl 3-49
Programming Techniques for Speed....... ... liiiiiii..., 3-52
Lesson 11—Sample Programs LaL 0 besyen pozaiine 3-54
Compound Interest Program demgyed nolooul, elsrmeiil 354
Pricing Control . Proglest!l. 12281 JOT2! Iball JeMal-eysd sromald 358
Spherical Coordinates Program i oon oo bviiliin e 361

Chapter 4 DETAILS of the Features and Functions..i.............. 41

BOBIC CIDBIGLONSo v vipmnime e i e A SOURIOHA, 230 nRIoN 41
Standard Displey 2. L alClaioiViusesincisealsnd 41
DS EDTY KOYS ... 2 oo v v s e S0 JEmioadl 25 41
CIORTING OPBERIIONS.. . . . oo v i s o i e einin s BRSUANNA SigIN 4.3
Alternate Function Keys (andl and INVD) 4.3
EUSDIRY FOIMBIScooivin i cin v m v i ee B 100 . DOS. D85S 4.5

Selentific NOWBHIONo eiennessslool pllec2malimes 45
Engineering Notation bl (528 Joe0laylad ahal siped 49
Fix-Decimal Control ... Jesdl. laosl laisl v ayed. suemnsanhl 4-10
DABDIRY BNOWE EIPOP - .o v i s i iisin s mimnie s o o4 S0QLANRND 412

Arithmatic Calculations 100280« oizisvesd Inreod. eeiged 4-12
Basic Functions—I+1 [=], Ixll+) b=) ..o iiioiiiiaiian 412
Algebraic Operating System Entry Method 0. 4-14
PReNNesessolasse whing il Das sansheY. naal 4-16

Number Copy Operation with Parentheses 4-19

TABLE OF CONTENTS
i e Y

Aigebrale Functions - U PITVEY Do conn s pnimovepnad. i 4-20
WOCIITOORE . . o0 i vinns v v e wiows OIS0, WOY SOUTTIRID 420
togasrthmes ' (VL. TRU 00U LN NN o heR bas yiasgal) aney 4-20
POWers of 10 end @0 arsiooud ool mpeS s tosme e 4-21
ANQIo CRICHIAUIONS 1 N8 0T L s i e 900 g 421

ANDIRMIORON " Vs s v e OIS Y. onba) 4
TAGONOMSAS FUNCHIONS .. v v oo s ZRRI0CTL 100X, Dring 422
Inverse Trigonometric Functions00 .00 0ol 424
Degree, Radian, and Grad Conversions 4.25
Intoghs By MDA Vil 2100 o s 2mRoe9.n 426
DS BN T TEORI o e T v e i e i B 4.27
Powesrd 8nd'Roote' | oV 0.0 N S B s aengaudand el 4.28

Nomony CRERIIRIEET D0 JE00 L cvu v cnd L oplinaianl o, 4.29
Selection of Memory Size (Partitioning)c.o0 .. 00 4.29
Cloaling DMEMemory vu. iy S00RROROL 10 IZIneR.] 4-31
Storing and Recalling Datao oo nition iuuoiin. 4-3
Memory Nrithmiglife. = /. [PTUVIIEE oo s s . PDR) 4-33
Memory/Display Exchange ™. ... L L Srad el sond bow speld 435

Special Comtiol Dperaliond /107 '".. ..o s s s poleaabbA 10 4-36
Printer Capabilities—IOP1 0008cooovennn. 437
Error<400) O ;352N I B RAATUNE . - L08TMON BT A 4.37
Signum Funtlion—<DPP I 1). aora-Woarnar eodoed eyl 4.37
Satistica—IOP] 1100, .5 . v e e SRR JUCY. S 4.38
Partitioning—I0R] 18R 211 (.21 CLUQ LOEIVIEQS Wi 2oall ¢ 4.38
Tost. Operations~I0P] 18392noisloi) wnl o 4.38
Increment/Decrement Data Memories—[OP] 20-29/30-39 4.38

Canversions. : .00 00 T S e R a0 B iy oileety Y 4.39
ANQIS Convarsions 0000 IOk priinnd ahmouinesd 439
Polar/Rectangular System Conversions00 000, 4.40

Statistics Considerations 80,800 el siwal rosieo® | 4.43

el e R S S LR e S LE O S M L 443
O TRy 0100 S BLIARIY L csnc s st aNunithl Ao aeeE ol 2 4-44
Mean, Variance, and Standard Deviation0 00000 4-46
Linoat ROgression oo usewanntiiu, 2tmewd agtysitticl, s 450
Weend-Ling AnSIYSISccvuiu divnimoies 2000 SD0AL 4-55
Statistics in Calculationsayoaizizad, faedd 20 2000280 2ea LG 4-56

TABLE OF CONTENTS

ERORETRS TIODTOINIEIEL . . <.« oonvsuoms e o w i s SN0NORET ol 4.57
Programming Your Caloulatorcooemmnen s dbanies 4-57
Storage Capacity and Partitioningvsiua 457
Fundamental Program Control Functionsooo. 0 oo 4.58
ORI VIO 21 L oo a5 mm e wins i wanece i nBRGHBIIET B 459
ErROng YOUr Programiiil oo snre sas vas s> SBBON. 9lnnd 460
RUGNNG NOUR PIOGIBIM -« w0 v NG 20 O unGn T 4-62
Working With- Programs.aaelaoud chfsmanogin T.easm) 4863
Kevstroke Storage | seadissealr i bas asihai aewnal 464

BORING PEOBERINS.« s wiivoo s s v wwemns o SABY, aluitarh Bog 1904 465

LRSS bt TR . vate s o e e SOGEN 0URUDE DeLh S58Y 465

FEORBIRr DIBLTUORHIONE. . . - v vnin wimns miwasmse o DO DI 8300 466
B0 TO-INSHUCHON I 0 S 20 v v vt wws e v aens o s SO HESOBL), vy 4-66
Conditional Transfers (Test Instructions) vhcain. 467

T Hegialor COMMPATIBONS.« o« 5 oo - NAM S180 S0 467
Decrement and Skipon Zero (DS2Z) 0 loei e civn i 4.68

FUS SIS RO o oo v s s o vace wn o SOBORALIA Sp0m 4.71

Flags and Ertor Conditions asasdisd uslgaluwom 4.73

BEINECL AGIYEEBING VUl i e e e SNOIESGO Josinnl)2 4.73
Chapter S PRINTER CONTROLccnvnrmeenoaess. Bk BOL2 51

Seipctive Printinge) 20 4Q g erc - Wo arh 8o o sou il soun 5-2

RIBNAG YOUr-PYOOIRN ... oo v ooy oiens poas Dhahl 0k-oailnil 5-4

Listing User DataMamories . L CLLG O VLS DAL nama it 5-5

Tasing Your' Galculations <.« covovc 2LEL I902n0lesgD. L 55

Audit Trail Symbois in TraceModec..icivvonadbini.. 56

Special Control Operations for Printingi00us. 53
Alphanumeric Printing—IOP] 0006ccccviiiias, 59
Hotting Data==loPl 07 anolevoo) mala® hpaniosilas 512
List Program Labels Used—I[OP1 08...... ... cciooiiuisa. 5-13

Appondht Adn Case DR DHTICUItY ..o vt immeivin e NHRE & A1
Battery Replacement coiisivell foabosie Los a00eneN . gc A3
the DIfficoty Persists. . La i . ol L8 v v e e ROLEZRPAR 165 A4
DCHEnDd Comers o210, U0 9 Nel . oo aigyiend anld:bo A4
If You Have Questions or Need Assistancei..0... AS

APDONEIN B BrT0T CONGIMIONG . .o o0 v v i s v o sipatesais sy 8 B-1

Section 1—Genera! Congilionsc.ovvcrenvmosesonnsossins B-2

Section 2—Statistical Error Conditions covvinnn. B-3

Errors Encountered When Running a Program B-3

TABLE OF CONTENTS

A N Y RO T T CA1
Appendix D Troubleshooting Programsc.iivnnen.n D-1
Basic ConsideralianBe...... cios ouhaime vinims s o e D1
AlJebraic DPAIRING SYBIMEo o sit o ponicinions oypas 3 vams s D-1
EClte INBRIICHINN - e Mg e D-1
MUltiple LBDBIB o o b oo v s e e Mo g D-2
Lo e e eees o eaiatititn S AN AT RE R, Ao itades D-2
Statistical Functions T i kgt i et ol B D-2
Polar/Rectanguiar GODVEISIONS. s vminss s ns ain sinsn s s s D-2
ARGIE MROCIE SBMEIIONY - oo o cinibs pun o chiinis o 5 Bt st 55554 D-2
Functions Operatingonthe Display Only D-2
L T T e R R R D3
T R S O S D3
POTHIEOBINNG = ik d koo i SR s o b i b AN il B o D-3
i ac aE A e reaadBedted AL 2ol DeottbAdntobron ot T, D-3
Progtains DO MOt T QU 5 oo g dvainiy onan s s e o vns o D3
Consistent Data Yields Inconsistent Results D5
Troubieshaoting: PYOCERIIR -t .0 5000 snes Sbndas Aiciihs it D6
Consistontly VWEoNE RESIIRIE com et s notnmbnes b D-7
Using the Calculator in ERBORDBIS. .. oo oiir s saisnms tovmr 1mie D7
Using the Printer in/DIagnosis. - 4 A/ sywmiss mis e aos oo ssnass D9
Appendix E Learn Mode MN@NONICS ..l i (3 ia/abbinblald b e visaoe s ns E-1
Appendix F Notes to the TI-58/58CI59 USer.c.cauvevsnsms s F-1
Items in T1-58/58C/59 Programs Which Require Alteration to Run
O U THBE.. . - i it i v « WRaba s ek Sl ks 3\ MG e F-3
BHON s i s e e S e s e ik et o S b e s, AR - S G-1
ONe-Yoor Linmitod WRHBBIY ¢ ..o i wameiiron - srmmsis Gnn 30wl bt Sise 7153 H-1

vii

GETTING ACQUAINTED

e e e e)|

Introduction

The Texas Instruments programmable 66 provides
you with advanced scientific functions, large memory
area, and user-friendly programming features. The
calculator has arithmetic, logarithmic, trigonometric,
statistical, polar to rectangular conversion, and other
functions for use in calculations. The TI-66 can have
a maximum of 512 program steps or 64 data
memories with each memory convertible to 8
program steps.

When you are entering or reviewing a program, the
calculator shows you readable abbreviations of the
instructions, a significant improvement over key
codes (used by earlier calculators),

The horizontal key layout and angled display give the
calculator clean styling and functional grouping of
the keys. The TI-66 is thin enough to slip into your
pocket and weighs less than 5 ounces. Optionally,
the PC-200 thermal printer connects to the TI-66
giving it printing and listing capabilities. Both units
are compact and battery operated so you can take
them anyplace you may need to solve mathematical
problems. The long battery life eliminates the need
for recharging. Your program and data, stored in the
calculator, can be taken anywhere thanks to the
calculator’'s constant memory feature.

The TI-86 uses the same set of instructions as the
TI-59/58/58C family of calculators. Appendix F covers
the differences between calculators.

Included with the calculator is a Quick Reference
Guide and a complete sourcebook on operating and

. programming the calculator. This sourcebook has

been specifically structured to start you programming
right away. You'll see “hands on” how easy it really is
to access the power of your Ti Programmable
calculator.

11

GETTING ACQUAINTED

When you are looking at the instructions of a
program, the display shows a mnemonic for each
instruction. A mnemonic is a three (or fewer)
character representation of an instruction displayed
by the special alpha positions. An instruction's
mnemonic is similar to the instruction’s name. The
mnemonic for pause is PAU and the mnemonic for
run/stop is R/S. Appendix E provides a complete list
of program mnemenics.

Chapters of This Book

Chapter 1 shows how easy it is to use and program
your calculator.

Chapter 2 is a tour of the keys and functions of your
calculator.

Chapter 3 is a guide to programming. Short lessons
progressively present the concepts of programming
the calculator.

Chapter 4 is a detailed and comprehensive analysis
of functions and operations showing the effective
limits of the calculator. (If you are already quite
familiar with calculators and programming and just
want all the facts and details right away, you may
want 10 skip directly to Chapter 4 and review your
calculater in technical detail.)

Chapter 5 covers the use of the PC-200 printer with
the T1-66.

Helpful and important information is also found in
the appendices.

13

GETTING ACQUAINTED

Power Up

14

New batteries were installed in your calculator at the
factory. When the display becomes dim or erratic,
the batteries need to be replaced. Just replace the
batteries as instructed by the Appendix A.

Press the [ON] key. You will see a single zero and
DEG in the display. Turning the calculator ON
automatically establishes certain settings. These
include setting angle units to degrees, removing
scientific and engineering notation, assuming
floating decimal point, setting the program pointer to
the start, resetting all flags, clearing the subroutine
return stack, clearing pending operations, and
clearing the display. To check your calculator's
display, press [8], decimal point [.] and the change
sign [+/-] keys, then press [8] nine times to fill the
display. An eight shows all segments of a standard
display position. Note that the decimal point and
minus sign progress to the left each time an eight is
pressed. You can enter up to ten digits into your
calculator at 'any one time for either positive or
negative numbers. All digit entries made after the
tenth are ignored. The minus sign always stays
immediately to the left of any negative number in
the display.

Whenever you exceed the limits of the calculator,
Error is displayed. The error is cleared by pressing
the clear key, ICLR]

Turning the calculator off (with the [OFF] key) and
back on (with the [ON] key) removes the number in
the display and any pending calculations. The
Constant Memory™ feature retains numbers in user
data memories and in the program memory. To
conserve power, after about ten minutes of nonuse
the calculator is automatically powered down
through the APD™ Automatic Power Down feature.
The effect is the same as if you had pressed the
IOFF] key.

GETTING ACQUAINTED

B —

Take the time to explore the calculator. Investigate
any feature you may be curious about. Check the
manual's description of the feature. Try other
features. This is one of the best ways to get to know
just how much you can do with the calculator. The
more you learn about its capabilities, the better it is
able to serve your needs.

Types of Operations

Calculations From
the Keyboard

There are two main uses of your calculator:

First, your machine is a high-powered manual
calcuiator, ready to immediately handle the usual
math chores as well as more intricate calculations
with its advanced professional features. Second, the
calculator can be programmed to give quick
solutions to tedious formulas and repetitive
problems.

Your advanced Tl caiculator is equipped with the
AOS™ method of entering problems, one of the
most straightforward entry methods yet devised.
Problems are easily solved by entering them into the
calculator simply and directly. For instance, to
convert 100°C, 37°C, and —4°C to Fahrenheit, you
multiply the Celsius reading by 9/5 and add 32.

°F = °C x 9/5 + 32.

Press Display
100 [x] 100
9[+] 800
51+] 180
32 [=] 212

You can repeat this sequence to find 37°C = 98.6°F
and - 4°C = 24.8°F, (More will be said about the AOS
entry method and the calculating power it gives you
later in the book.)

15

GETTING ACQUAINTED

Writing Your Own Once you have determined a calculation sequence

Programs—An
Example

16

and you have several values to apply to that
sequence, you can press the [LRN] (learn) key and
teach the calculator the sequence. For the above
example, press [LRN] then key in the following:

[x]

(9]

[+]

Is]

[+]

::illlzl

IrRsS] (to stop and display answer)

Press [LRN] once more after the sequence. This tells
the calculator to stop “learning” the keystrokes you
enter. The calculator now remembers this sequence
and can perform this series of operations on any
number (in this case, any Celsius reading) that you
may enler into the display.

1. Key in your Ceisius value.

2. Press [RST] (reset). The program is at the step that
you left it until the program pointer is moved.
Reset immediately positions the program to ST,
the point at the beginning of program memory
(precedes step 000).

3. Press [RsS] (runistop) to execute the program.

Press Display
100 IRsT] [RIS] 212
37 IRST] [Ris] 98.6
4 [+/-1[RST] [RsS] 248

This is all you need to do to convert any Celsius
reading to a Fahrenheil equivalent. Writing your own
program can be just as easy.

This ability to execute a program you have created
is one of the most powerful aspects of your
calculator. Once a program is stored and you have
tested it to verify its accuracy, you can use it over
and over again simply “at the touch of a key."”

GETTING ACQUAINTED

Printing Capabilities

Your calculator is compatible with the PC-200
printer. The printer can record the display value on
paper whenever you tell it to. When solving problems
directly from the keyboard, you can selectively print
any or all desired intermediate results or provide a
complete listing of a stored program. Print
instructions encountered in the program cause
automatic printing of the value in the display
register. These printing features allow you to run a
program while recording multiple answers. The trace
option prints all steps performed and the
corresponding numerical results.

Through use of the special control operations (OP
codes) you can assemble and print any messages
you need to identify segments of the listing or to
place a tille with a calculation sequence. Up to 16
characters can be printed per line, made up from a
master set of 71 characters,

17

GUIDED TOUR
B T S ——

CHAPTER 2

Many users never fully access all the capabilities of
their calculator, simply because they never take the
time to see each key in action. This chapter can be
covered in less than 30 minutes and provides
information on the features and functions which
make the TI-66 a high-powered scientific calculator.
This tour will familiarize you with the main keyboard
features so that as you move on into programming,
you'll be able to take full advantage of the
calculator.

Note: If you're already familiar with advanced
calculators having the AOS entry method, you can
skip this key tour chapter and get right into
programming (Chapter 3). Refer to Chapter 4 for an
in-depth discussion of the calculator's features.

As you proceed through this tour, be sure your
calculator is at hand. Demonstrate to yourself each
key and feature as it's discussed. The best way to
learn about your calculator is to use it!

21

GUIDED TOUR

Keyboard Basics

Clearing the There are two procedures that allow you to clear the
[Disgllay—ICE] display register of your calculator, [CE] and [CLRI.
CL

ICE] Clear Entry—The clear entry key clears the last
number you entered into the display (provided that a
function or operation key has not been pressed). Use
of this key does not affect calculations in progress.
(So, if you accidentally hit 5 instead of 6 in the
middle of an entry, just press ICEl and enter the
complete correct number). The ICE] key will also
clear an error condition.

[CLR] Clear—The clear key clears the conlents of the
display register and any calculations in progress. If
an error condition exists when this key is pressed, it
too is cleared.

Data Ent Numbers are entered into the machine with the data
Keys—I0M9], [.1, ‘entry keys lo] through [9], [.], and [+/-] As you enter
[+/-] In] any number, the decimal point is assumed to be to

the right of your entry until the decimal point key is
pressed. The fractional part of the number is then
keyed in, and the decimal point floats to the left
with it. To change the sign of a number in the
display just press the change sign key [+/-] once.
(Pressing [+/-] again changes the sign back.)

Pressing [2nd] [n] places the first 10 digits of n in the
display as 3.141592854. Thirleen digits are carried in
the internal display register as 3.141592653590. ICE]
does not remove this enlry.

22

GUIDED TOUR

Basic Operation
Keys—[+] [-]
[x] (=] [=]

The AOS Entry
Method

Basic arithmetic is handled with the 5 basic
operation keys [+], [=], [x]), [+], and [=]. Your
calculator has a powerful feature called the AQS
entry method. The AOS entry method automatically
sorts out mixed operations in a problem for you.
Even complicated problems can be entered simply
and directly. (We'll say more about the ACS entry
method below.)

When you press the [=] key, all pending operaticns
(operations that AOS has delayed in order to perform
higher ranked operations), are completed, and the
result is displayed.

Mathematics never permits two different answers to
the same series of operations. Because of this
requirement, mathematicians have established a
universal set of rules for calculations. For example,
the problem:

3+410-2x14+7=7

has only one correct answer, 9.

You can key this problem directly, left to right, into
your caiculator and you'll get the correct result. The

algebraic hierarchy of the calculator sorts the
operations you enter, applies them in the correct

order, and lets you see what it's doing along the

way. Your calculator performs operations in the
following universally accepted order:

23

GUIDED TOUR

e —— e —————————————

Parentheses
Keys—[(], [)]

24

1. Single argument function keys—act on the
displayed number immediately—as soon as you
press the key. (We'll talk more about each of
these keys later in the “tour”. They include all the
keys for the trig and log functions and their
inverses, as well as square, square root,
reciprocal, integer and inverse integer, signum,
absolute value, and conversions.)

2. Powers and Roots (y* and ¥'y) are handied next
(we'll discuss these further in this chapter.)

3. Multiplication and division are completed, followed
by

4, Addition and subtraction.

This algebraic hierarchy applies to each set of
parentheses.

Finally, the equals key completes all operations.

If you want to specify the order in which an
expression is evaluated, you can do so with the
parentheses keys, [(1 and [) |. which are discussed
next. Parentheses receive the highest priority in
mathematics and are treated that way by your
calculator.

If you need to give any set of operations lop priority,
use parentheses. Parentheses give you a way to
group numbers and operations. By putting a series
of numbers and operations in parentheses you tell
the caiculator “Evaluate this part of the problem
first, then use this result for the next part of the
calculation.” Within each set of parentheses, your
calculator operates according to the rules of
algebraic hierarchy. You should use the parentheses
if you have any doubts about how the calculator will
handle an expression.

GUIDED TOUR
R e U —

You often see equations or expressions written with
the parentheses to imply multiplication:

2+1)(3+2)=15.

Your calculator will not perform implied
multiplication. You must key in the multiplication
sign between the parentheses:

(12041101 Ix)lc)30+1210)]11=]15.

Here's an example using parentheses:

Bxi4 + 9 + 1
(3+46=2)x7

Evaluate:

In problems of this type, you want the calculator to
evaluate the entire numerator, then divide by the
entire denominator. To ensure this, place an extra
set of parentheses around the numerator and
denominalor as you key in the problem.

Press Display - Comments

[CLR] 0 Clear any
calculations in
progress.

[(]1BIx][(]14[+]9

1 13 (4+9) is evaluated.

[+] 104 8x(4+9)is
evaluated.

tiad 105 The value of the
numerator.

[=11C]I(]131[+186

[<121)] 6 (3+6=+2)is
evaluated.

[x171)] 42 The value of the
denominator.

[=] 25 The result.

25

GUIDED TOUR

Alternate
Function Keys—
[2nd], INV]

Keys—
chml, [sTO],
[RCLI, [Exc]

26

Your calculator is equipped with numerous functions
designed to save you time and increase the
accuracy of your calculations. To allow you access
to all of this power without loading the machine with
keys, many of the calculator keys perform more than
one function. The first function is printed on the key.
To use the first function of a key, just press it. To
use the second function (written above the key), just
push the [2nd] key followed by the key below the
function.

For example, to find the natural logarithm of a
number, press linx]. To find the common logarithm of
a number, press [2nd] llogl.

The inverse key lINV] aiso provides additional
calculator functions without increasing the number
of keys on the keyboard. When you press the [INV]
key before a particular function or key, an allernate
function of that key is accessed. The [INV] key works
with many keys on your calculator to provide extra
functions.

The [2ndl and lINV] keys allow over one hundred
different keyboard operations to be performed even
though the keyboard has only 49 keys. For use with
specific keys, see Alternate Function Keys in
Chapter 4.

Each time you turn on your calculator there are 32
user data memories. Actually, the number of user
data memories available versus the amount of
program memory is variable. (See Selection of
Memory Size in Chapter 4 for details.) User data
memaories are locations in the calculator where you
can store numbers you may need to use later. User
data memories are also referred to as memories or
data memories throughout this manual.

The number of data memories and the amount of
program memory is governed by the partitioning. If
partitioning is for no data memories, there are 512
program steps. If partitioning is for 64 data
memaories, there are no program steps. For each
user data memory partitioned, the maximum program
size is reduced by eight. Partition for XX data
memories by pressing [2nd] [Part] XX.

GUIDED TOUR

Because there is usually more than one user data
memaory, you must indicate which memory you want
to use by specifying its two-digit address XX. For
example, [STO] 08.

For memories 0-9, a single digit can be used to
address the memory provided a non-numeric key
follows the address. For example, [STO] 8 [(). This is
known as “short form addressing.”

Pressing [2nd] ICMs] clears all data memories
simultaneously (places a 0 in all memories). The ICE]
and ICLR] keys do not affect what is in the
memories.

IsTO] XX (Store)—stores the number contained in the
display register into memory XX (00-63, depending on
the partitioning) without disturbing the contents of
the display register. (Any number previously stored in
memory XX is replaced.)

IRCL XX (Recall)—This instruction simply brings the
contents of memory XX to the display register. The
contents of memory XX are not disturbed.

Example: Partition for eight data memories by
pressing {2nd] [Part]l 08. Store and recall 3.21.

Press Display Comments

3.21 [sTO] 07 321 Store 3.21 in memory 7

[CLR] 0 Clear display

[RCL] 07 3.21 Recall contents of
memory 7

[2nd] [Exc] XX (Memory Exchange)—The exchange
sequence simply swaps the contents of memory XX
with the contents of the display register. (The
display register value is stored in-memory XX while
the number stored in memory is displayed.) This key
allows you to make a quick check or use what is in
memory without losing what's in the display register.

2.7

GUIDED TOUR

e e it

Memory These key sequences let you operate on the
Arithmetic numbers stored in memory without affecting pending
Keys—[SUMI, [Prd]l operations or the value in the display register.

[suml XX (Memory Sum)—Adds the display register
value into data memory XX. [INV] ISUM] XX subtracts
the display register value from the data memory XX,

[2nd] [Prd] XX (Memory Product)—Multiplies the the
display register value into data memory XX. [INV]
[2nd] [Prd]l XX divides the display register value into
data memory XX.

Example: Calaulate the total cost of items of 328
and $6.60 with 5% sales tax. (Since

cost + 5% = cost + .05 cost = 1.05 cost, a cost
including 5% tax can be found by mulliplying by

1.05)

Press Display Comments

28 IsT0] D1 /28 Store 28 in memory 1
6.6 Isuml 01 £§6 1 Add 6.6 to memory 1

1.05 [2ndl [Pre) 01 1.05 Multiply memory 1 by
1.05

[RCL] 01 3633 Total Cost

Display Control

Standard Display - The display provides numerical information complete
with negalive sign and decimal point, indicates the
angle units setting, and displays Error for an error
condition. (A complete list of error conditions is found
in Appendix B.) An entry can contain as many as 10
digits.

The terms display and display register are not
synonymous. Display refers only to the digits you see
in the calculator’s display window. The display
register is the inlernal register that retains numbers to
13 digits.

28

GUIDED TOUR

B R e T

Scientific
Notation Key—
[EE]

If @ number is too large or too small to be handied by
the standard format, the calculator automatically
displays the number using scientific notation.

For example. when 400,000 and 2,000.000 are
multiplied together you get 800.000,000,000. a number
too large for the 10-digit display. So, it is displayed as
8 11 which means 8 x 10",

In many applications, particularly in science and
engineering, you may need to use very large or small
numbers. Such numbers are easily handied using
scientific notation. A number in standard form is just
the number as it would be written with no exponent.
A number in scientific notation is expressed as a
number (maniissa) times ten raised tc some power
(exponent).

Number = Mantissa x 10Sxponent

To enter a number in scientific notation:

1. Enter the mantissa using up to 7 digits. Then press
T+1-1if the mantissa is negative.

2..Press [EE] (Enter Exponent). 0O appears at the right
of the display.

3. Enter the power of 10. Then press [+/-] if the
exponent is negative.

The number — 3.890145 x 10-% is displayed as
~3880145-32.

In scientific notation. the exponent tells you how
many positions the decimal point is from its position
in standard form. A positive exponent tells you how
many places the decimal point would be shifted to
the right and a negative exponent tells you how many
places the decimal point would be shifted to the left.

Example: 2.9979 x 10" = 299,790.000.000

(Move decimal 11 places to the right and insert zeros
as needed) :

29

GUIDED TOUR

1.6021 x 102 = 0.0000000016021
(Move decimal 9 places to the left and insert zeros as
needed)

After you enter the scientific notation format it stays
there until you remove it. If you press [INV] [EE] the
calculator returns to standard display format as soon
as the value in the display is within the range of the
standard display. ICLRI removes scientific notation.

Engineering Engineering notation is a modified form of scientific
Notation Key— notation. The power (exponent) is always adjusted to
[Eng] a multiple of three (102, 10-8, etc.). As a result, the

mantissa may have one, two, or three digits to the left
of the decimal point. This feature allows the
caiculator to display results in units that are easily
used by the scientist, angineef. or technician (such as
10-'2 for picofarads, 10-7 for millimeters, 10° for
kilograms, or 10-% for microseconds).

The display may be converted to engineering notation
at any time by pressing [2nd] [Engl. INV] [2nd] [Eng] ‘
returns the display to standard display format. [CLRI
does not remove engineering notation.

Example: Evaluate 8 x 98 x 30 in Engineering Format.

Press Display
[CLRI [2nd] [Eng] 000
8[x]98[x] 784 Q0
30 [=] 2352 03
[INV] [2nd] [Eng] 23520

210

GUIDED TOUR

Fix-Decimal This convenient feature allows you to choose the

Control—[Fix] number of decimal digits you'd like 1o appear in the
display. Just press [2nd] [Fix], then press the desired
number of decimal places (0 through 8). The
calculator rounds all subsequent results to this
number of decimal places for display only. However.
the calculator retains its own internal accuracy of 13
digits. (INV] [2nd] [Fix] or [2nd] [Fix] 9 removes the fix-
decimal format.

Example: 2 - 3= 0.666666667

Press Display
ICLR] g
21<131=] 0 6666686667
[2nd] [Fix] 6 0D 656667
[2nd] [Fix] 2 067
[2nd] [Fix] O 1

[INV] I2nd] [FIx] O GBE65B657

211

GUIDED TOUR
e

Algebraic Functions)

Square, Square These keys act immediately on the number in the
Root, Reciprocal display register without affecting other calculations
lK s—[x7, Vx], in progress.
1/
[x}] (Square)—Calculates the square of the value in
the display register.

Ivx1 (Square Root)—Calculates the square root of the
value in the display register.

[11x] (Reciprocal)—Divides 1 by the value in the
display register.

Here's an example pulting them all together:

V& + (1/5¢ = 50

Press Display Comments

[cLR] "0 ' 'Clear any calculations in
progress.

4 vx) 2 Vi

[+15 [1x oz 115

x4 004 (159

[=] 50 The result

212

GUIDED TOUR

Powers and
Roots—I[y+]

The y* key allows you to raise any posilive number
to a power. You can use [INV] ly’] to find any root of

a posilive number.

For Powers (y*)

1. Enter the number (y)
you want raised to a
power. .

2. Press Iyl

3. Enter the power (x).

4. Press [=] (or any
operation key).

Example: Calculate 28,

For Roots (V)

1. Enter the number (y)
you want to find a
root of.

2. Press INV] [y').

3. Enter the root (x).

4. Press [=] (or any
operation key).

Example: Calculate ¥64.

Press Display Press Display
[CLR] 0 ICLR] 0
20yl 6 (=] 64 64 INV] [y*] 6 [=] 2

NOTE: You should only enter positive values for y.
Error results from negative entries.

213

GUIDED TOUR
e e e ————— e

lli.garithms--lll'url.

214

These keys give you immediate access to the .
logarithms of any positive number without affecting
calculalions in progress.

linx] (Natural Logarithm)—Calculates the natural
logarithm (base e = 2.718281828459) of the number in
the display register. (Errer is displayed if this number
is negative or zero.) The antilogarithm of the natural
log (e*) is found by pressing INV] linx]. Inverse natural
log is valid for positive and negative numbers.

[2nd] llogl (Common Logarithm)—Calculates the
common logarithm (base 10) of the display register
value. (Again, the value in the display should be
positive.) The antilogarithm of the common log (107
is found by pressing [INV] [2nd] llogl. Inverse common
log is valid for positive and negative numbers.

Example: Calculate the natural logarithm of
(827 + 10'9).

Press Display Comments

ICLRI 0 Clear any
calculations in
progress,

[() 2.7 NVl Inx] 1487973172 €% is evaluated.
[+] 1.2 INV] [2nd]

liogl 1584893192 10'? is evaluated.

¥ 30.72866365 Pending addition is
completed.

[inx] 3425185888 The result.

GUIDED TOUR

Angle Mode

Keys—|[Degl, [Rad],

[Grad]

Trigonometric
Keys—[sinl.;lcooi.

[tan]

Your calculator is equipped to handle calculations
that involve angles in degrees, radians, or grads.
Your calculator always powers up in the degree
mode. However, you may select any one of three
common units for angular maasure using the key
sequences below.

[2nd) [Deg] (Select Degree Mode)—In this mode all
entered and calculated angles are measured in
degrees. until another mode is selected. (There are
360° in a circle; a right angle equals 90°)

[2nd] [Rad] (Select Radian Mode)—In this mode all
angles are measured in radians. (There are 2n
radians in a circle; a right angle equals n/2 radians.)

[2nd] [Grad] (Seiect Grad Mode)—In this mode all
angles are measured in grads. (There are 400 grads
in a circle; a right angle equals 100 grads.)

These functlions calculate the sine, cosine, and
tangent of the angle held in the display register. The
angle is measured in the units of the selected angle
mode.

¢ (hypotenuse)
a
g
b
cos f= 2 sin 6= L 4 tan 8= =
c c b

where a, b, and ¢ are the lengths of the sides.

The sequences [INV] [2nd] [sin]. [INV] [2nd] [cosl. and
lINV] [2nd] Itan] calculate respectively the arcsine,
arccosine, and arctangent. The resulling angles are
displayed in units corresponding to the selected
angle mode.

In the degree mode, all angles are interpreted in
decimal format. (See Degree Format Conversions in
the next section.)

215

GUIDED TOUR
e ————————

Conversions

Degree Format There are two ways of representing an angle in
Conversion— degrees. One method is to use the

[DMS-DD] degree/minute/second format, DDD.MMSSsss. DDD

represents the whole angle, MM represents minutes,
and SS denotes seconds. If greater accuracy is
desired, fractional seconds may be entered in the
sss position. Degrees are to the left of the decimal
and minutes and seconds are to the right.

To convert from the degree/minute/second format to
decimal degrees enter the angle into the display
(DDD.MMSSsss) and press [2nd] [DMS-DDI. Pressing
[INV] [2nd] [DMS-DD] converts decimal degrees to
degrees, minutes and seconds,

Two digits should always be entered for minutes and
two for seconds as the calculator looks at the
minutes and seconds part of the entry two digits at
atime. Trailing zeros need not be entered.

Example: Convert 54°02'09.6" 1o ils decimal
equivalent and back.

Press Display Comments
54.02096
[2nd] [DMS-DD] 54038 DD.ddd

IINV] [2nd] [OMS-DD] 54.02086 DD.MMSSs

This same process can be used to convert hours,
minutes and seconds to decimal hours and vice
versa.

218

GUIDED TOUR

Polar/Rectangular The calculator makes it easy to convert between the

[Conagoralons— polar and rectangular coordinate systems.
P
Polar Rectangular
FROM: (R.6) TO: (%.y)
R g] sonia domy
[
6 I
i
X

To convert from polar to rectangular coordinates:

1. Enter the value for “R”

2. Press Ixxl -

3. Enter the value for “@" (be sure angle mode is
correct)

4, Press [2nd] [P>RI to display the value for “y"

5. Press [xst] to display the value for “x"

To convert from rectangular to polar coordinates:

1. Enter the value for “x"

2. Press [x=t)

3. Enter the value for “y"

4. Press [INV] [2nd] [P>R] to display the value for “8"
in selected angle units

5. Press [x=t] to display the value for “R"

217

GUIDED TOUR

218

Example: »q 4
J
y=?
?@‘b
3167
x=? !
Convert R =45 melers, 6 = 31.6° into rectangular
coordinates
Press Display Comments
[CLRI] [2nd] [Deg] 0 Clear any
calculations in
progress and select
degree mode.
45 [x=tl Ly ' *Place R in the
I Mu t-register
31.6 [2nd] [P>Rl 2357836577 Enter 8, convert to
rectangular
coordinates, and
display y.
[x=t] 3832771204 Display x. (y is now

in the T-register)

*NOTE: This conversion uses a special register
known as the t register accessed through the Ixstl (x
exchange 1) key. The special applications of this
register are shown in the programming sections.

GUIDED TOUR

Statistical Functions

Mean, Variance,
and Standard
Deviation

Linear Regression

You may find yourself handling large sets of data
points describing some parameter of a large number
of items. (These data could be test scores, sales
figures, etc.) The most commonly used statistical
calculations used to boil down such data to a few
representative numbers are the mean, variance, and
standard deviation. The mean is the average value of
your data—a measure of the central tendency of
your data. The variance and standard deviation give
you a feel for how variable the data are; a measure
of how far the data differ from the mean.

Refer to Statistics in Chapter 4 for a complete
discussion of how to use these powerful functions.

Linear regression deals with predicting future events.

In linear regression, data is usually expressed as
pairs of variables that could be plotted on a graph.
We usually label a pair-of points like this with the
letters x, y (x may be dollars in advertising while y is
unit sales, or x may be a test score and y a
performance record in the field, etc.). You want to
make a prediction for some x value that you select:
what will happen to y (or vice versa)? Your caiculator
can do this for you by mathematically drawing the
“most representative line"” through your data points.
You may then use the resulting line to make
predictions.

Corr: How well
data are related

compute y’

entery

Intercept = §

|
|
'
|

1
compute x’ enter x

The use of these and other features is detailed in
Statistics in Chapter 4.

218

PROGRAMMING

Lesson 1—Storing a Program

A program is a series of instructions that you may
wish to use numerous times. The calculator has an
area of memory for storing program instructions.
Program memory shares the caiculator's memory
with the user data memories. By partitioning for a
certain number of user data memories, the
remainder of memory is available for program
instructions.

Program memory is accessed through the learn
mode. The learn mode lets you store instructions to
make a program and lets you look at a program. By
numbering each program step, the calculator keeps
track of the program position. Each time you enter
an instruction, the step number advances. You can
leave the learn mode to make keyboard calculations
and come back to the learn mode at the same step.
You must leave the learn mode to make keyboard
calculations; otherwise, the keys you press are
stored without being performed until the program is
run,

In this book you will see the term "program pointer.”
The program pointer determines the step number to
be displayed with each program step and causes
program execution to follow the order of the
program steps.

31

PROGRAMMING

e e ——————

32

Try this simple program that adds two numbers.
first number + second number = answer B

The program can be stated as follows.

Receive a value

Create pending addition operation,
thereby remembering the current value

Receive a second value
Complete the operation
The Result

The program can be entered as shown here.

. Comments

{2nd) IPar} 63 | . 7862,

-8et partitioning for 63

memories, 0-62 (this
leaves 8 program steps,
07

[2nd] [CP] Clear program memory

[LRN] 8T Enter learn mode

[+] ‘000 + Add the number from the
display

[R/S] 001 R/S Stop to enter another
number

[=] 002 = Complete the calculation

[Rss] 003 RS Stop to show the answer

The digits in the left side of the display show you
the program pointer. This allows you to keep track of
how many program steps you have used.

PROGRAMMING

Note that [RiS] has two different uses in this
program. The first stop lets you enter a number at
the right time. The second slop keeps execution
from going beyond the end of the program. If you
leave off the last [R/S], execution continues to step
004, 005, and so on until the end of program
memory. The display remains blank until the
program pointer reaches the end of program
memory, and then Error is displayed.

Press Display Comments
[LRNI] Leave learn mode

The program pointer is still where you left it. Check
the step number.

ILRNI 003 WS Enter learn mode

ILRN] [RST] Leave learn mode and
A) ‘reset the program pointer
to the start, ST

Before running a program, it is good practice to
press [CLR] to ensure that there are no calculations
pending.

Try using the program to add 227 and 34.

[CLR] Clear possible pending
calculations

227 227 Enter the first number

[Ris] 227 The program runs until it
encounters the R/S

34 34 Enter the second number

[RiS] 261 The program runs until it

encounters the next RIS

33

PROGRAMMING
“

Try adding 107 and 107 by just entering 107 once.

[RST] Reset the program
pointer to the start

107 107 Enter the first number

[R1s) 107 The program stops with
107 in the display _

[Ris] 107 The program runs until it

encounters the next RIS

The answer is not what was expected. R/S does not
affect the normal sequence of calculations. The
sequence here is 107 + = which produces 107. For
this program, a second number must be entered
from the keyboard; the number is not reentered by
RIS.

It may not seem like a very useful program, but
some important fundamentals are shown here.

* A program is stored by keying in instructions while
in the learn mode.

* The display register is useful for input and output.

* The program step number represents the program
pointer.

* Program steps are numbered automatically.

* The program step number does not change until
you take action to change it.

* Execution can be controlled by the use of RIS in a
program and from the keyboard.

* R/S does not alter the calculation sequence.

PROGRAMMING
S ————

Lesson 2—Editing

One drawback to entering numbers as the program
stops for them is that you must keep track of
program execution so you will enter the correct
number at the proper time. It is better to assign
each variable to a data memory before executing
the program. That way you do not have to keep
track of program execution. It is also better tc have
the calculator reset itself thereby relieving you of
this task. This lesson shows how changes are made
to a program.

The editing keys provide a means of changing a
program and cannol be stored as program steps.
While in the learn mode you can:

1. Display the instruction stored at any program
location.

2. Delete instructions.

3. Insert 'instructions.

3-5

PROGRAMMING

In order to understand the actions to take when
editing, consider the four basic features of the .
editing process. y

1. You always see the instruction just written. To
show the instruction just written, every step must
be automatically inserted after the previous step.
If the instruction were not inserted, you would be
writing over the next unseen program step.

2. There is a point at the start called ST. To have an
automatic insert after each step, there must be a
position before step 000. ST serves only to access
step 000. It is not a step in program memory.

3. There is no insert key. Since every instruction is
automatically inserted, no insert key is needed.

4. The delete key has an automatic backstep. Since
the next instruction is inserted after the current
step, a deleted instruction can be replaced most
easily by including an automatic backstep. If you
need to delete adjacent steps, it is easiest to
delete the last one first and proceed in reverse
order.

Keep in mind that every instruction is inserted—
there is no “write over” action and that each time an
instruction is written, all instructions after that point
in the program shift cne step later in the program. It
takes less time to shift just a few instructions than
it does to shift hundreds. You can shorten the
calculator’'s response time to entering instructions
by partitioning for just enough steps for your
program before keying it in.

36

PROGRAMMING

The program from Lesson 1, when changed, can be

stated as follows.

Recall the number in memory 1

Create pending addition operation,
thereby remembering the current value

Recall the number in memory 2

Complete the operation

Display the result; reset the program
when the next run begins

The program can be entered by modifying the
previous program as shown here.

Press Display Comments

[RST] ILRN] ST - Enter learn mode

{rcLl 01 001 01 ' /RCL is in step 000 and
its memory address is in
step 001

[ssT] 002 + Single step past existing
program steps

[ss1] 003 RS

(2nd] [Del] 002 + Delete RIS and
automatically backstep
for the next entry

[RCL] 02 004 02 RCL is in step 003 and
its memory address is in
step 004

[ssT] 005 = Complete the calculation

[ssT] 008 RS Stop to show the answer

37

PROGRAMMING

[RST]

007 RST

When the program is rum,
it will reset itself. At this
point, all program steps
have been used. If [SST]

is pressed or another
instruction key is :
pressed, the calculator
will leave the learn),
To make room for more
steps, simply repartition
the memory outside the
learn mode. -

ILRN]

Leave the learn mode lt.
step 7.

This was the program
before editing.

000+,
001 RS

, 002=

003 RS

This is the program after
editing.

Try using the program to add 227 and 34. If the
program pointer is at step 7, the program will reset
itself when run.

227 IsTo] 01 227 Store the first number
34 [sTO) 02 34 Store the second number
[RsS] 261 The program runs until it

encounters R/S

PROGRAMMING
A A

Try using the program for 107 and 107.

107 IsTO] 01 107 Store the first number

[sTol 02 107 The second number is
already in the display

IR/s] 214 The program runs until it

encounters RIS

The program used the numbers in memories 1 and 2.
It added these numbers and stopped. This time, 107
is added to itself because it is in both memories.
Pressing [R/S] executes a RST and repeats the
program.

In some cases, leading zeros are not needed to
access data memories 0-9. Short form addressing
may be used whenever a nonnumeric keystroke
immediately follows the memory address. In this
program, [RCL] 01 [SST] could have been entered as
fRCL] 1 [SST]; since the calculator expects an address
after RCL, the 1 is interpreted as 01 when followed
by ‘a nonnumeric kéy.

Note that RCL and 01 are two interdependent steps.
Since there are many memories, RCL by itseif would
have no meaning so it requires an address. Several
of the calculator’s instructions require an additional
part, forming an instruction group consisting of an
instruction and its field. Depending on the
instruction, the field is a memory address, a number
of data memories, a label, a flag number, a number
of display digits, an operation selection number, or a
step number. If RCL is deleted from RCL 01, the
calculator ignores 01 and regards it as a no-op.

[RST] [LRN] ST Enter learn mode

[ssT] 000 RCL Advance to the RCL

[2nd] [Del] ST Delete (backstep is
automatic)

[LRNI] [RST] Leave the program.

PROGRAMMING

Try using the program to add 5 and 4. -

‘ll’

5 IsTol 01 § Store the first number

4[svol 2 4 Store the second number
(short form)

RS 8 The 5 was not recalled
but 4 was taken from the
display and added to the
number in memory 2.

Restore the program by inserting RCL.

[RST] [LRN] ST Enter learn mode
[RCL] 000 RCL Insert RCL
ILRN] [RST] Leave the program.

This program is useful only as an example since its
function is simpler from the keyboard; however, =
several important concepts were presented.

* The learn mode operates with four important
editing features.

* Instructions are automatically inserted.

* Some instructions use more than one step, the
instruction and its field.

* Single step advances the program without altering
the instructions of the program.

* Delete includes an automatic backstep. ‘s

3-10

PROGRAMMING

Lesson 3—Labels

In each run of previous sample programs, you used
[RST] and [RsS]. Since [RST] returns the program
pointer to ST, you may have concluded that every
program must start at the beginning of program
memory. Labels provide easy access to any location
within a program. You can start execution anywhere
there is a label. A label occupies two steps: LBL
followed by the label name. Here are some
sequences from programs; in each is a label.

- RACL LBL

RIS [A
= LBL +
LBL RCL RIS
X i fRCL sl

PAU 02 PAU

In the first sequence, label x is used. In the second
sequence, label RCL is used. Note that a keystroke
loses its criginal meaning when following LBL. The
label serves only to mark a specific point in program
memory and does not affect pending operations. A
label should not be used to interrupt a sequence
such as RCL 14 where more than one program
location is involved in defining a single processing
action.

31

PROGRAMMING

In the third sequence, label A is used. This is called
a user-defined label. There are ten user-defined
labels available, A through E" Press A from the
keyboard and the calculator will find label A and
begin running the program from that point. It
eliminates the need to position the program pointor
before execution.

Label x and label RCL are known as common
There are many of these labels on the calculator.
Any key can be used as a label name except: [2nd],
Idssﬂ. [BST], ILRNI, [ON], [OFF], IDell, lind], ILBL], or a
igit. "

The difference between common labels and user-
defined labels is that pressing a common label from
the keyboard does not start program execution. If
you have a program segment labeled x?, for exam
pressing [x?] from the keyboard simply squares the
displayed value. However, the keyboard sequence
ISBRI [x’) does cause the program to start running at
label x?, There are over 60 common labels to work
with.

312

PROGRAMMING
e —

Change the program that adds two numbers 1o
include user-defined labels.

Press Display Comments

[2nd] [Part] 61 23.60 Set partitioning for 61
memories, 0-60 (this
leaves 24 program steps,
0" :

[RST] ILRNI ST Enter learn mode

ILBL] A 001 A Use A to make the first
entry

[sToOl 002 sT0

1 003 M

[R1S] 004 R/S Stop when the number is
stored

LBL! B 008 B Use B to make the

‘ second entry

[sTol 007 8170

2 008 02

[R/S] 008 RS Stop when the number is
stored

[LBLl C 011 C Use C to make the

- calculation

[ssT] 012 RCL

[ssT] 013 o

[ssT] 014 + Add the two entries

[ssT] 015 RCL

[ssT] 018 02

[ssT] 017 = Complete the calculation

[ssT] 018 RS Stop to show the answer

ILRNI You left the program at

step 18. The used-defined
labeis will take care of
finding the right place to
start.

313

PROGRAMMING

314

Try using the program to add 227 and 34. |

227 227 Enter the first number

[A] 227 The program stores the
first number

34 34 Enter the second number

(B8] 34 The program stores the
second number

icl 261 The program makes the

calculation

Notice that the order of running A and B does not
matter for this program. Try using the program to

add 107 and 107.

107 107 Enter the first number
IBl107 The program stores the
~ first number

[a] 107 The second number is
already in the display.
The program stores the
second number.

icl 214 The program makes the

calculation

PROGRAMMING

B e N R e

The following comparison of the three addition
programs we have tried provides an overall view of
how the user-defined keys improve the usability of a
program. Clearly, the third version is the easiest to
use,

First Version Second Version Third Version

Press [RST] Enter 227 Enter 227
Enter 227 Press [STO] 01 Press [A]
Press [R/S] Enter 34 Enter 34
Enter 34 Press [STO] 02 Press [B]
Press [R/S] Press [R/S] Press [C]
Display 261 Display 261 Display 261

When processing transfers to a label, it preserves all
pending operations, register contents, and settings
and begins searching for the specified label at step
000. When it finds the label, it stops searching and
changes the program pointer to the step number
where the label was found. This process of
transferring to a label takes a relatively short time,

- and does not noticeably delay running the program.

If & label is at two places in a program, the second
label will never be found. So do not use a label more
than once in a program.

The important features of labels are:

* A label marks a position in a program.

* There are two types of labels: common and user-
defined.

* LBL removes the original meaning from the
instruction used as a common label.

* User-delined labels make a program more
convenient.

* Each label should only be used once in a program.

315

PROGRAMMING

Lesson 4—Transfers

A transfer moves the program pointer 1o a given
destination. A transfer can be made from the
keyboard (this technique is mainly used for getting
fo a certain point in a program so it can be edited)
but transfers are mainly used in programs. When
program execution reaches a transfer, it goes 1o the
destination of the transfer and executes from there.
The destination of a transfer can be a label or a step
number.

The simplest transfer is GTO (pronounced “go to").

A segment that begins with a label and ends with a
transfer back to the label is called a loop. Here is a
program that uses a loop to count.

Press Display Comments

[2nd] [CP] Clear program memory
[RST] [LRN] ST Enter learn mode

[LBL] [RST] 001 RST Use this label for looping
[+1] 002 + Count by addition

[2nd] [Pause] 003 FAU Display the number while
the addition is pending

1 004 1 Increment by 1
IGTO] IRST] 008 RST Loop to the label
ILRNI Exit learn mode

318

PROGRAMMING

B e e —

Try having the program count starting with 10.

10 10 Enter starting value
[GTO] [RST] 10 Position the program
pointer

[RsS] 10 Counting begins

11

12

13

(etc.)

[RsS] [CLR] O Stop the program from

the keyboard (hold [R/S]
until execution ceases)
and clear any pending

addition

This program can be streamlined. Since reset can be
used as a transfer with destination of step 000 (RST
works like GTO 000), the label can be left out.

[2nd] ICP] Clear program memory

ILRN] ST Enter learn mode

[+] 000 + Count by addition

[2nd] |Pause] D01 PAU Display the number while
the addition is pending

1 002 1 Increment by 1

[RST] 003 RST Loop to step 000

[LRN] Exit learn mode

317

PROGRAMMING

Try having the program count starting with 10.

10 10 Enter starting value
IrRsT] 10 Position the program
pointer

RsS] 10 Counting begins

11

12

13

(etc.)]

[RsS] [CLR] 0 Stop the program from

the keyboard and clear
any pending addition

These programs illustrate transfers and also rely on
AOS™. A pending operation is completed when an
operation of. equal or tesser ranking in the hierarchy
is executed. In this case, the pending + is

{1 completed the!next time! + is encountered. ’-_
You can have a step number as the destination of a -
transfer. This is called absolute addressing because
the transfer always goes to the same step number
address regardiess of shifts due to editing. .
Remember that a step number is three digits. When
the transfer uses absolute addressing, the
destination will occupy two program steps. When
you key in GTC 123, the following takes place.

318

PROGRAMMING

[2nd] [CP] Clear program memory

[RST] [LAN] ST Enter learn mode

laTO] DOOGTO Transfer instruction

1 002 01 Two steps after the
instruction are set aside
for the tield

2 002 12 If the next keystroke is
net a digit, the
destination will be 012

3 002 23 The third digit completes
the field. The first digit
moved to the previous
step.

[LRNI [RST] ILRN] ST Review the program

[ssT] DOOGTO Instruction

[ssT] 001 01 First digit of destination

IssT] 002 23 Second and third digits
of destination

[LRN] Exit learn mode

Change GT0 123 to GT0O 223.

[LRNI 002 23 Enter learn mode

[2nd] [Deil 001 01 Delete the last two digits
[2nd] [Del] 00OGTO Delete the first digit

[2nd] [Dell ST Delete the instruction

3-19

PROGRAMMING

3-20

laTol 000 GTO

Reenter the instruction
s0 the calculator will
merge the next three
digits into two steps.
calculator would not ,
merge properly if only the
step that is wrong is
changed.

Two steps after the
instruction are set asid@
for the field 3

If the next keystroke is
not a digit, the
destination will be 022

3 co2 23

The third digit completes
the field. The first digit
moved to the previous
step.

ILRN] [RST] [LRN] 8T

Review the program

IssT] ~ '00DGTO Instruction 1

IsSTI 001 02 Firstdigit of destination

IssT] 002 23 Second and third digits
of destination

ILRNI] Exit learn mode

Important points regarding transfers include:

* A transfer directs execution immediately to the

chosen destination.

* The destination of a transfer can be a step number

or a label.

* GTO is the simplest transfer.

* One effect of RST is that it transfers to 000.

* When absolute addressing is used, the destination

occupies two steps.

PROGRAMMING

Lesson 5—Planning a Program

A program can execute in sequence or it can
transfer to distant locations in program memory. To
make your programs understandable to other users,
follow established ways of organizing programs.
Your program might be many steps long. For
someone else to understand it, you should break it
into segments that each have a special job. If you
know how a program should be organized, it will be
easier for you to understand the action of someone
else's program.

Generally, input begins a program. Start with those
steps of the program that involve getting numbers
into the calculator. Sometimes a program requires
many inputs and the program takes quite a few
steps before input is complete.

Often, a program relies on certain conditions to be
in effect before execution reaches a certain point.
These conditions may consist of clearing a memory,
setting a flag, setling the number of times to loop,
establishing the value in the t register, and other
things which you will become aware of as your
programming skills advance. Setting these
conditions is usually done early in the program and
is called initialization.

Next might be a section of computations, These
would make up the main part of the program.

ey

PROGRAMMING

In the next example, user-defined labels are used to
initialize, enter numbers, and to make the "3
calculation. Here is a program to average numbom_

[2nd] [Part] 60 3158 Set partitioning for 60
memories, 0-59 (this
leaves 32 program steps,

0-31)

IRST] [LRN] ST Enter learn mode

iLBL] A 001 A Use A to initialize
memories

0 [sTo] 01 cosa O1

IsTO] 02 Co6 02 o

[R/s] 007 RS Stop when initialization is
complete

LBU B 008 B8 Use B lo enter numbers

fsum} 01 011 01 Memory 1 sums the

SEENA Uk SO CRinbers

forl22 .. ||| 013 22 ~Memory 2 counts the
entries 1

[R1S) 014 RS Stop when the number
has been entered

LeLl C 016 C Use label C to make the
calculation

[RCL] O1 018 M

[+] 019 / Divide the sum by the
number of entries

[RCL] 02 021 02

(=] 022 = Complete the calculation

(RS 023 R/S Stop to show the answer

ILRN] Exit learn mode

3.22

PROGRAMMING

Try using the program to average 71, 81, 87, 84, and
92.

[A] 0 Initialize

71181 71 Enter the numbers
81 (8] 81

87 8] 87

84 [B] B4

92 (8] a2

Ic] 83 Find the average

The program might end with the output but there
might be some special segments of instructions
after the outpul. This position at the end of the
program is customarily reserved for subroutines.
Subroutines are discussed in Lesson 6.

Here are some guidelines for deveioping a program
on your own,

1. Define the problem clearly. Identify the formulas,
variables, and desired results. What is known?
What is to be determined? How are the known
and the unknown related?

2. Develop a method of solution (an algorithm).
Work out a preliminary sequence of operations
that could be used to solve the problem.

3. It is often helpful to develop flow diagrams,
drawings that depict the flow of execution. Here,
you can picture interactions between various
parts of the program. You may even discover
ways to simplify the program structure afier you
see it drawn.

4. Assign labels to transfer points in the program.
Decide which segments to access with user-
defined keys. Decide if a segment will be more
useful as a subroutine (see Lesson 6). Determine
where the program shouid stop.

3-23

PROGRAMMING
e e e S e R T T A T e S —

5. Assign user data memories for the various
storage and "housekeeping” needs of the

program.

6. Clear the program memory if you do not wish tm
use any of the program already entered. Enter
program. Do not use short-form addressing w
a field is followed by a number. In the learn !
mode, single step through the program after it is
entered to check for miskeyed instructions.

7. Test the program. Check out the program using 1
test data.

8. Edit the program. Place the caiculator in the

learn mode and make the necessary corrections.
9. Retest the program. Repeat steps 7 and 8 as
needed.

10. Record the program. Make a list of all program
steps. _

11. Document user instruclions. Write down :
instructions describing how to use your program.
Describe the restrictions and limitations of the
program.

Important points regarding the planning of a
program include:

* The order of most programs is as follows.
Initialization/Input
Computational sequences
Output
Subroutines

¢ The effort spent writing a program can be reduced
through methodical development.

324

PROGRAMMING

Lesson 6—Subroutines

Subroutines give you the capability to define a
sequence of keystrokes that have a certain purpose.
Once this sequence is made into a subroutine, it can
be called in just two steps, an appreciable savings
in program steps for a sequence that is needed
repeatedly. You can label and reference subroutines
from anywhere in your program. When you use a
subroutine—it is said that you “call” it—you tell the
calculator to temporarily go to a sequence of steps,
run that sequence, and then to return to the point
where the subroutine was called. When a subroutine
is called, the calculator remembers the next
execution step as the place to return to. The
subrouline is executed until a return is encountered.
RTN (INV] [SBR] merges into RTN) directs execution
back to the step stored when the subroutine was
called.

It's good practice to write programs as subroutines
s0 they can be used by other programs without
modification. To do this, use [INV] [SBR] to halt
program execution instead of [RiSl. Through the
remainder of this manual, programs will use this
technique when applicable.

The three stages of executing a subroutine are (1)
calling it, (2) running it, and (3) returning to the point
of call.

There are different ways of calling a subroutine:

* SBR to a label

* SBR to a step number

* user-defined key

325

PROGRAMMING

326

In a program, a subroutine call stores the step
number that will be used as the return address. If
the subroutine begins with a common label, SBR
followed by the label name is needed. If a
subroutine begins at a certain step number, SBR
followed by the absoiute address is needed. If the
subroutine begins with LBL A (a user-defined label),
only A is needed to call the subroutine. As a rule, a
subroutine which begins with a user-defined label
can be called without the use of SBR. Here are
some sequences from programs; in each is a
subroutine call.

SBR RCL
SBR 00 o1
EXC 26 A
0e SBR +
Lah o1 A
S8R EbetC PAU

In the first sequence, subroutine SBR is called. Note
that a keystroke, when used as a common label,
looses its original meaning when preceded by SBR;
that step only sends execution to the label. In the
second sequence, the sequence beginning with step
96 is called and when execution returns, the
sequence beginning with step 104 is called. In the
third sequence, subroutine A is called. A user-
delined label does nol need SBR to call the
subroutine.

Between the beginning of a subroutine and its return
lie the steps that give the subroutine its function.
This function might be to apply a formula to a
number, place a number in memory, or to look up a
number in memory. It is even possible to call

another subroutine from a subroutine. The

subroutine ends when execution reaches a RTN.

PROGRAMMING

There is an internal memory for return addresses
known as the return stack. It works much like
placing numbered papers in a bin. When the stack is
clear, the bin is empty. The paper with the first
return address is placed in the bin first. The first
number in is on the bottom of the pile—it will come
out last. The most recent entry is on top. When a
return occurs, the number on top is read, program
execution returns to this step and the paper is
discarded. The return stack is also called the return
register,

The number of addresses in the return stack
represents the level or number of subroutine in
progress. Since the return stack can hold only six
return addresses, a subroutine can call a subroutine
that can also call a subroutine, etc., up to six times.
This capability is shown graphically.

[' ‘.

sy sy [ey iLex) [L8L] : [L8L]
@) |ew 14] Nv) s8]) | 8|
|SBR] . . 4 £ " t
o | bt | ; P
N ol : v
\ 1S8R 158 18R] | 15887 (s8] /
\\ [+ NV IS8R [t i
\ : ; ; , :
ZA o vl iNV] INvI | INV] NV
IN
iset | (11) | iseml | (10) | tsemi | (3)\ 1semi | (3)) tsemi | (7)N 1sem
Main First Second Third Fourth Fitth Sixth
Program Level Level Level Level Level Level

The return tells the calculator to transfer to the point
in the program stored by the return stack. When a
return occurs, processing checks for the most
recently stored return address, transfers to that
address, and clears that number from the return
stack.

327

PROGRAMMING

3-28

By providing a return for every subroutine call, the
stack is cleared when no subroutines are being
executed. If a RTN is encountered and the stack is
empty, execution has no place to go, so it stops as
if a RIS is there. Any time RST is used, the return
stack is completely cleared.

If a subroutine is called from the keyboard, the -
return stack is cleared. When execution gets to the
RTN at the end of the subroutine, it stops just as if
a RIS were encountered.

The following example shows how a subroutine can
be used to shorten a program. \

Program With
Program Without Subroutines Subroutines
LBL A LBL A
RCL O1 RACL O3 RCL O
({ SBR LNX I
x x RCL 02 |
2 z SBR LNX f
5 5 RCL 03)
)) SBR LNX el
sSuM O SUM 01 RCL 04 |
RCL 02 RCL 04 SBR LNX
((RS ¥
* x LBL LNX
2 2 {
5 5 *
)) 2
sSUM O SUM O1 5 i
RS) i
SUM 01
RTN

When attempting to reduce the number of program
steps, look for sequences that appear more than
once. If these sequences are long enough and do
not contain RST, CLR, or =, replacing them with
subroutines is worthwhile.

PROGRAMMING
B — e —

Avoid these instructions inside a subroutine: RST,
CLR, and =. One function of RST is that it clears
the return stack. When the stack is clear, no return
will take place and any RTN encountered will stop
execution. If you do need to transfer to location 000
(the primary function of RST), use GTO 000 or a label
if there is one at 000. CLR clears all pending
operations, those in the subroutine and in the main
program. The equals instruction completes all
pending operations including those of the main
program and subroutines in progress. Instead of
using =, enclose the operation in parentheses. An
example of a subroutine built this way is

LBL SBR (/ P1) RTN

which takes the number in the display when the
subroutine was called and replaces it with the
number divided by .

Occasionally you may design a program so that
completion of a program occurs inside a subroutine.
In other words, the answer to your proeblem is found
without returning control to the calling point. In such
situations return of control remains pending; the
subroutine return register has not been cleared.
Unless you turn the calculator off or use IRSTI,
difficulties may arise when you run a new problem,
as erroneous transfers to the previous return
addresses may resull. To prevent such left-over
return addresses from misguiding future solutions,
you should press [RST] to clear the subroutine return
register before running the program. Alternatively,
you could begin the program with a user-defined
label and start execution by pressing that user-
defined key. From the keyboard, all subroutine calls
clear the return register.

329

PROGRAMMING

e e e TS R e i T SR S e e —

The important features of subroutines are:
* The structure of a subroutine.

* The saving of steps that results when making a
duplicated sequence into a subroutine.

* The three stages of executing a subroutine.
» How the return stack works.

* Things to avoid when writing subroutines.

3-30

PROGRAMMING

Lesson 7—Decision Making

RST, GTO, and SBR transfer regardless of program
conditions. There are also instructions that transfer
only when a certain condition is met. Suppose you
want a program to count as in Lesson 4, but you
want it to stop once the count is high encugh. The
program can decide when to increment again and
when to stop. Try this decision-making program.

Press Display Comments

[2nd] [CP] Clear program memory
[LRN] ST Enter learn mode

ILBL] [E] G01 E Label program

[y go2 (Enclose in parentheses
[+] Q03 - Count by addition

1 004 ' 1 Increment by 1

{3t 005) Complete addition

[2nd] [Pause] 006 PAU Display the count
INV] [2nd] Ix2t] 008 X2T Test if counting is less

than t
(€] 003 € Loop to label E until the
count is high enough
(INV] [SBR] 010RTN - End of sequence
ILRNI Exit learn mode

I3

PROGRAMMING

Try having the program count from 6 to 10.

é 4

10 Ixx=tl Set the program to stop
at 10 by placing 10 in the
t register
6 6 Enter the starting value
(3] 7 Counting begins 3
8
g

10 The program stops

A decision consists of two actions.

Action 1. Test a condition. The result is
either true or false

Action 2. (if true) Transfer to given destination

Action 2. (if false) Continue execution from this
‘ point if the condition is false

When the calculator is at action 1, it makes a test,
The test can be a comparison of numbers, a special
loop counter, or a flag. If true, a built-in go to sends
execution to the destination. The destination can be
a label or an absolute address (program step
number). If false, execution skips this step and
continues from that point in the program.

PROGRAMMING

m

When the condition is a comparison of two numbers,
the numbers must be where the calculator expects
them: one in the display register (x) and the other in
the t register (). The t in t register stands for “test.”
For a comparison, the display number is tested
against the number in the t register according to the
current display format. It is necessary to store t in
the t register and place x in the display register
before making the comparison. A number is stored
in the t register using X=T. The comparison
instructions are XsT, X=T, INV X=T (not equal), X>T,
and INV X>T (less than).

When the condition is a loop counter, a countdown
of a data memory is made until its value is zero. It is
necessary to initialize the correct user data memory
before entering the loop. The loop counting
instructions are DSZ and INV DSZ.

When the condition is a flag's status, it must be set
to the intended status before the test is made.
Setting a flag that has already been set, resetting a
flag that has already been reset, and the testing of a
flag have no effect on the status of the flag nor do
they affect calculations. All flags can be reset at
once with [RST] or [2nd] [CP). The flag instructions are
ST.F, INV STF, IFF, and INV IFF.

Note: When using a flag, check that the program
can set and reset the flag to correctly indicate its
intended meaning; otherwise, execution may get
channeled to a path not criginally intended for the
conditions.

PROGRAMMING

Taking into account the above preliminary tasks for
making a decision, the process involves the

following.
Steps in
program Purpose
Preliminary Set t and x, set
the number of
times to loop, or
set the flag
status.
Action 1. Condition or Test a condition.
INV condition . The result is
¥ either true or
false.
Action 2. Label or Transfer to given
(if true) absolute destination.
address
dnguhide OB si) O K181 y
Mooy Ty A A Skip the transfer
(it false)o. CLcL JLUSEL and continue
execulion
starting with the
next step

A simpie way to state the execution of a decision is
“transfer if true, skip if false.”

PROGRAMMING

Lesson 8—Examples of the three decision types

Comparisons

To illustrate comparisons, wrile a program to
indicate a number is positive by returning a 1,
negative by returning a -1, or zero by returning a 0.
This is called the signum function.

Press Display Comments

[2nd] [CP) Clear program memory

[RST] [LAN] ST Enter learn mode

LBLl A 001 A Label the program

[2nd] [CP] 002 CP ' Set the t register to zero

[2nd] [x=1t] 003X=T Check if X is equal to t

[=] 004 = Transfer to label =if true

IINV] [2nd] [x>t] 006 X=T Check if X is less than t

[+1=] 007 4{= ~ Transfer to label +/— if
true

1 008 1 Output for a positive
number

[inv] [SBR] O0SRTN End of sequence for
positive numbers

[LeLl [+1-] o11'¥7=

1[+1-] 013+/- Output for a negative
number

Ll [=1] 015 = This label ends the
sequence for 0 and
negative numbers

[INV] [SBR] 016 RTN

[LRN] Exit learn mode

335

PROGRAMMING

The DSZ
Conditional
Transfer

3-36

Try the program for 55, 0, and — 299.

55 [A] 1 Positive
0 [al 0 Zero
299 [+/-]1 (Al -1 Negative

The DSZ instruction, Decrement and Skip on Zero, is
ideal for counting the number of repetitions of a
loop. When a sequence is needed a certain number
of times, store the number in memory X (any of
memories zero through nine) and place

DSZ X destination !
at the end of the sequence. DSZ reduces the
magnitude of memory X by 1 each time it is
encountered and transfers to destination until the
memory contains zero, at which point the transfer is
skipped. d

If memory X contains a noninteger, the content is
decremented by ones until the last decrement when
the fractional portion is subtracted.

Like 'the other transfer instruclidns. DSZ can be used
from the keyboard but is usually used in a program.

To illustrate DSZ, write a program to count by ones
from 1 to an entered value.

[RST] [LRN] ST Enter learn mode

ILBLl A 001 A Label the counting
program

[sTol 09 003 08 Memory for countdown

[sTol 10 005 10 Memory for constant

PROGRAMMING

ILBL] [2nd] IDsz] 007 DSZ The loop starts here

[(] cos

IRCL] 10 010 10 Calculate the difference

[+1110=] 013 - . between the constant
and the countdown and
add 1

[RCL] 09 . 015 09

[)] 018)

[2nd] [Pause] 017PAU Display the present count
[2nd] [DSZ] 9 018 089 Decrement memory 9

[2nd] [DSZ] 020082 Transfer to label DSZ if
memory 9 is not yet zero

lINV] [SBR] C21 RTN End the sequence when
the countdown is
complete

[LRN] Exit learn mode

Tty running the program to count to six.

[CLRI Clear the display and
pending operations

Counting begins

6 (Al

1
2
3
4
S
6

Notice in step 018, the field for DSZ is 09 but it was
entered as 9. DSZ works only for memories 0
through 9. It accepts only a ones digit in the address
field even though two digits are displayed.

PROGRAMMING

Flags in a
Program

338

There are 10 individual flags, numbered 0-9. Some
flags are internally programmed to perform special
functions as follows.

Flags 06 General purpose flags.

Flag 7 [oP] 18 sets flag 7 if no error condition
exists. [OP] 19 sets flag 7 if an error
condition does exist.

Flag 8 Setting flag 8 causes the calculator to
stop a program if an error occurs while a
program is running.

Flag 9 If you are using your calculator with the
optional printer, you may control the
trace mode of the printer with flag 9. If
flag 9 is set, the printer is placed in the
trace mode and calculated results are
printed after each function or operation.
If flag 9 is reset, then results are printed
only by ‘a print instruction. Flag 9 may be
used as a general purpose flag if you are
not using the optional printer.

Flags have numerous uses, three of which are listed
below.

« Controlling program options manually from the
keyboard before running a program

* Program conditions set a flag for later testing
* Keeping track of execution history—which path
through the program has taken to the present

point?

« Setting a non-numeric condition in a program

PROGRAMMING

e ——————— e —— e —— e ———————

To illustrate flags. write a program to add numbers
to memory 1 or memory 2 depending on the setting
of a flag. This program could be used to total sales
made in the morning separately from those made in
the afternoon without the salesperson being
concerned with the separation of totals. These totals
could help determine how many salespeopie lo use
in the morning and afternoon. The salesperson
would just enter the sale and press [Al. Simply have
the store manager press [Dl at the start of the day,

and [E] at noon.

[RST] ILRN] ST Enter learn mode

[LBL] A 001 A Label the sales program

{2nd] [1tF] O 003 00 Flag zero, if set, totals
morning sales

[+] 004 + Transfer to LBL + for the
morning

[sum] 00 Q08 00 - Afternoon total in
memory 00

[INV] [SBR] 007 ATN

LBL] [+] 008 +

[sum] 01 011 m morning total in memory'

INV] [SBR] 012 RN

) 014 D -

[2nd] [StF] O 016 00 Set flag fer moming

liINv] [SBRI] 017 RIN e

[LBL E 019 € o

lINV] [2nd] [SIF1 0 D22 00 Reset flag for afterncon

[INV] [SBR] D23 RTN

[LRN] : Exit learn mode

3:.39

PROGRAMMING

Press [D] to begin the morning and press [E] to beg
the afternoon. Enter the sales by pressing [Al

0 [sT10] 01 0 gear memories 01 and
[sT0l 00 0

[o] 0 Morning begins

29.95 (Al 29 85

14.69 [A] 14 .69

13] 1468 Afternoon begins

59.48 [A] 58.48

18.95 [A] 19.85

[RCL] 01 4484 Morning sales total
[RCL] 00 7843

Afternoon sales total

PROGRAMMING
B ——————

Lesson 9—Indirect Addressing

Additional capabilities can be added to data memory
operations, transfer sequences, and special control
addressing through use of the indirect instruction,
[2nd] [Indl. The basic concept is that you go to some
user data memory (the indirect address), not to find
the information you need, but for where to find the
information. It is sometimes much easier to obtain
information indirectly like this. Instructions are used
indirectly by placing [2nd] lindl and then the indirect
address after the instruction. At this indirect address
is found the information that is actually needed.

A sample direct and indirect store instruction is
illustrated below.

Direct Indirect
Addressing Addressing
40(sTOI0O 40(sT0} (2nd] [IMFDD—I

Memory 00

cads
A

%

3-41

PROGRAMMING

Here is an example that uses indirect functions to
keep track of the balances in several different =

accounts.

Press Display Comments

[2nd] [Part] 60 31.59 Set partitioning

[2nd] [CP] 31.58 Clear any previous
program

ILRN] ST Enter learn mode

[LBL] A 001 A Use label A to enter the
account number

[sTOl O 003 00 Store the account
number in memory zero

[INV] [SBR] 004 RTN

iLBU B 006 B8 Use label B to check the

current balance

TRCL] [2nd] [Ind] 0 COB 0O -
[INV] [SBR] 0O RTN

ILBLl C 011 € Use label C to enter a
change in the balance

ISUMI [2nd] [Ind] 0013 00
liNV] ISBR] 014 RTN

Of course indirect could be used in a non-repetitive
application, but it is usually more efficient to apply
indirect addressing where an operation is needed
repeatedly but for varying addresses. Continue
entering the following segment in this program.

This program segment clears memory 1 through X
where you can vary X.

Key _ Program

Sequence Step Comments

[LBL] 015 LBL Use label D to enter X
lo] 016 D ' -

342

PROGRAMMING

[sTOl G17 STO Store X in memeory 00
0 018 GO0
LBL] 018 LBL
[E] O e
ICLR] 021 CLR

[STO] [2nd] lind] 022ST+ Zero is to be stored
where memory 00 says to

memory 00 reaches zero

store
0 023 0C
[2nd] [Dsz] 024 D3z DSZ loop on memory 00
0 025 00 |
[E] 026 E Goto E if memory 00 not ‘
2ero
[INV] [SBR] 027 RTN Halts program when

First time through the loop. X is in memory 00 so
the [CLR] ISTO] [2nd] lind] 00 stores a 0in memory X.
DSZ then decrements memory 00 to (X — 1). Now the
indirect store sequence stores its 0 in memory

(X = 1). etc.

Note the special mnemonic ST+ for [STO] [2nd] [ind].
Séveral of the indirect instructions are merged like
this to save program space. For a complete list, see
page 4-73.

You can use 1 through the highest memory
partiticned for account numbers. Remember to
establish the slarting balances by clearing the
memories and entering the starting balance as each
account's first deposil. A positive amount is
considered a deposit and a negative amount is
considered a withdrawal.

343

PROGRAMMING

Indirect addressing is provided for all of the ,
calculator's functions that have a field (except LBL),
When a series of addresses can be easily calculated,
indirect addressing saves program steps especially
when taking advantage of a decrement instruction.

Indirect addressing can be used on either or both
fields of an instruction that has two parameters. -4
Indirect flag control is accomplished by placing the
number of the flag in a user data memory. For
example, storing 6 in memory 12 and completing the
sequence [2nd] [StF] [2nd] lind] 12 sets flag 6 while
[2nd] [1F] [2nd] [ind] 12 [2nd] [Ind] 12 branches to step
006 if flag 6 is set.

See Indirect Addressing in Chapter 4 for a complele
list of indirect instructions.

Important points regarding indirect addressing
include:

* The form of an operation using indirect addressing
s {SEIL
operation key - 1
[2nd] [ind]
address of pointer memory.
(two-parameter functions only)—I[2nd] lind] address of

second parameter pointer memory.

* The pointer memory indicates the actual address
that will be used.

PROGRAMMING
e ———————————

.I-.esson 10—Program Optimization

There are many methods of combining separate
program parts 10 save space. For instance. if a
subroutine call occurs as the last operation of a
routine, you may place the subroutine in line with
the first and eliminate the subrouline call.

A program like this can look like this

LBL LBL
E E
SER LBL '
STO STO
s _
LBL RTN
STO

" RN

Not only is'a savings of several steps realized. but
one level of the subroutine return register has been
freed. INV] [SBR] now acts like a [RiS). because the

subroutine return register is clear.

345

PROGRAMMING

3.46

As another illustration, consider the two sequences
shown below: .

Workable Segment Efficient Segment
X=T X=T
D D
1 LBL
ST0 D
04 1
RTN ST0
LBL 04
D RTN
1
ST0
c4
ATN

i
The purpose here is to store a .1 or a 1 depending
upon the results of the test. Both of these routines
perform the same function; however, the second is
four steps shorter than the first. The second
segment is organized so as 1o eliminate the first
segment’s need to repeatl steps.

In addition to the various techniques of combining
separate routines there are alsoc numerous
programming tricks that you may find valuable. In
the next example the programmer desires to use
only the value rounded to two decimal places of
number displayed in his calculations. Simply placin
the calculator in fix-decimal does not work because
most calculations continue to use the 13 digit
display register value.

PROGRAMMING

e ——————— A, T 0 M WY, R 4 T Y

Workable Segment Efficient Segment
(FiX
(02
X EE
1 NV
] EE
o FIX
- s
]

)
INT
!

1

8]

0

)

The purpose and method of the routine on the left
are fairly straightforward. The reasoning behind the
second sequence is more efficient but also more
obscure. Since the EE instruction operates only on
the displayed digits, this instruction discards the
unwanted digits after placing the display in fix-
decimal. The routine then removes the scientitic
notation format and continues using only the
rounded value.

347

PROGRAMMING

The following routines demonstrate three metho
performing the same cperation: adding 10.000 to
display register.

{ ((

+ . .

1 1 -

8] EE INV
8] 4 LOG
0))

0 ; :

)

Both the second and the third routine require the
same number of program locations. The second
method, however, is advantageous only when you
wish to leave the display in scientific notation.

As you become more acquainted with the capabilites
of your calculator, you will undoubtedly discover
short cuts that fit your needs. Be sure to record
these sequences for future use as they will lessen
the programming task. Until then, you may use the
many step-saving features already built into your
calculator in optimizing programs. These features
include functions such as the memory operations
[SUM] and [2nd] [Prd]. indirect instructions, and the
many special control operations.

Sometimes you may be attempting to program in I
straightforward a manner. You can often come up
with a different solution method and save program
steps compared to the first solution attempt, This is
illustrated in this next example.

348

PROGRAMMING

Service Charge
Program

A manager of a bank needs a fast and easy method
of determining the monthly service charge for many
customers,

The service charge for each account is calculated as
follows:

$0.10 per check for the first five checks (1-5).
$0.09 per check for the next five (8-10).

$0.08 per check for the next five (11-15).
$0.07 per check for each check over 15.

For more than 15 checks. the charge is 7 cents per
check plus 5 x 8003+ 5x80.02 + 5x380.01. This
compensates for the 10. 9. and 8 cent charges for
the first 15 checks.

C.07 per check + 0.30 if there are

over 15 checks.

= (.08 per check + 0.15 if there are
11 to 15 checks.

= 0.08 per. check + 0.05 if there are 6
to 10 checks,

= 010 per check if there are 110 &

checks.

Service charge

"

Attempting to write a program based directly on
these conditions would probably require at least
eighty or ninety program locations. Althcugh such a
routine could easily fit within program memory. it
might have to be streamlined significantly to allow
rocom for other program parts. Ore solution would
require relatively few steps. Consider the following
approach,

1. Enter the number of Checks (n).

2. Calculate n x $0.10.

3. Subtract $0.01 for every check except the first 5.

4. Subtract $0.01 for every check except the first 10.
5. Subtract $0.01 for every check except the first 15.

6. Stop Program

PROGRAMMING

Instead of testing the number to see which ca
it fit into and then applying a formula, this a
applies an equal charge to all the checks and then
discounts the charge for the checks above each
cutoff point. Examine the logic here for a moment.

T

DetnaiAl as tre |
Number of Checks | Ll
Iritiatize Program:
StorgninR, I sromm
Stoe Loop Counter | laisTol i}
InA_Round | iand] (Fuxd 21
Dusplay to Cents. | [2nd] (CP1
Clear T Register |
Gompute § 1M«
nx 810 | e
L
{
Subtract $0.01 For Each 1
I Cieck Over 5 Ower 30: - | e e
Ower 15 Mutplication is | 1-1Lifod v}
Lett Porging Unid) (1]
Tests Are Compioted) |
Subtract 5 Fromn
(Multply By New Value Il bmevi tsumi 1)
tPesiveorZero | IRCLIN
Forloops 1.3 |
1

Is
nPostve | et
or?.ero : 1=

L
Multiply By Zeroang |
CoPMEMATS (12 (hale)

Operations,
Display Mesult : v

PROGRAMMING

e ——— e ———————— .

The program is fairly straightforward until location
022 where the multiplication in step 021 is left
pending while an adjustment is made to n and tests
are completed. The loop is used to reduce the
charge on each check over 5 to $0.09; over 10 to
$0.08; over 15 to $0.07. The [2nd] [Ds2] instruction
asks which loop is in progress. For loops 1 through
3, the value of n is tested: if it is negative, zero is
placed in the display to complete the pending
multiplication and the program is terminated upon
computing the total service charge.

If the fourth loop is reached. the pending
multiplication is always completed with zero,
otherwise the charge on each check over 20 would
be reduced to $0.06. The program then determines
the total service charge and halts the program. This
last loop is not necessary for computation; however,
its elimination would require the use of adaditional
program instructions and the idea is to minimize the
size of the routine.

Service Charﬁe Program Listing
000 LB 020 1

001 A g21 X
002 sT0 g225
co3 o1 023 INV
004 4 024 SUM
005 STO 025 01
006 02 026 RCL
007 FAX 027 o
008 02 028 INV
008 CP 029 DSZ
010 030 02
0111 031 C
012X 032 X27
013 RCL 033 B
014 M 034 LBL
D15 LBL 03sC
016 8B 0380
017 - 037 =
Dig 038 RTN
0180

To run the program, simply key in some number of
checks and press [Al. For instance, 1 check costs
$0.10, 6 checks cost $0.59 and 83 checks cost $4.71.

3561

PROGRAMMING

Programmi
g::?mlquu or

peed

Only two approaches have been considered for this
service charge problem. Realizing that there are
many ways to program the solution to a problem,
these two extremes show just how different '
programming techniques can be. Naturally, there are
trade-offs. In this instance the second method |
requires less than half the program space needed fo
the first method; however, the first method demands
less time for the program to run. Regardless of the
approach you take to programming, the best
approach is the one that works best for you.

There are occasions when you can reduce the
execution time of long running programs that are to
be used many times. Under these conditions,
different key sequences may result in faster and
more efficient program operation.

When a program is running, the most time-
consuming operations are program transfers.
Therefore, minimizing the number of transfer
stalements leads (o a faster running program.
Although the use of subroutines is emphasized in
earlier discussions, when program space allows, you
may replace subroutines with in-line instructions to
significantly increase speed. i

Remember that a destination may be specified by an
absolute address or by a program label. If an !
absolute address is used, the program pointer is
immediately positioned at the new location.

However, if a label is used, the calculator must ,
search for the label until its location is found. Then,
program execution is continued from that point.

!, ’

When a program is initially entered into the
calculator, it is ditficult to know what the absolute
addresses will be. Editing a program often causes
addresses to change. The best procedure is to first
write the program using labels and convert to
absolute addressing after the program is completely
debugged. Inserting addresses and deleting labels
cause the addresses to change. However, this
problem may be overcome using [2nd] INopl to
reserve one program step with a label address that
will be required for an absociute address later.

PROGRAMMING
e —————

[2nd] [Nop] performs no operation when encountered
in a program. Since this command does not interfere
with execution (except when used as a label), it may
be used as a space-hoider. This technique is
illustrated below.

Label Addressing Converted to Absolute Addressing

027 $8R 027 S8R
028INX 02800
02aNOP 029 75

073 LBL 073 NOP
074 LNX 074 NOP

089 GTO ~ 099 GTO
100 LNX 100 00
101 NOP 101 75

Note that location 075 is used as the absoiute
address since transferring to a label address
positions the program pointer at the first location
following the label,

The transfer instruction itself must also be reentered
S0 as to instruct the calculator to automatically
merge the address.

Use this key sequence for converting the previous
example to absolute addressing.

laTol 29 laTol 74 IcTol 101

[LAN] [LRN] [LRN]
(2nd] [Dell (2nd] [Del] [2nd] [Dell
[2nd] [Dell (2nd] [Del] [2nd] [Deil
{2nd] [Dell [2nd] [Nop] [2nd] [Del]
[SBR] 75 [2nd] [Nop] IGTO] 75
ILRNI] [LRNI [LRNI

353

PROGRAMMING

Lesson 11—Sample Programs

Compound
Interest Program

3-54

This lesson contains several programs covering a
variety of applications. You may find these programs
to be a valuable source of probiem-solving and
programming techniques.

If 5% interest per year is received on an account
worth $1000, at the end of one year 850 in interest is
added making the account worth $1050. The $1000 in
the acgount today is called the “present value” of

the account because it has received no interest. But
at the end of one year you would expect it to be ¢
worth $1050 which is its “future value."

Compounding inlerest means that once money is
placed in an account and is left alone for more than
one period, at the end of each period interest is
added to what was in the account at the beginning

of that period. Interest is also earned on interest

such that the original $1000 is worth:

$1000 + $1000 (.05) = $1080 at the end of the first year
$1050 + $1050 (.05)=$1102.50 at the end of the
second year

The percent interest rate is divided by 100 to obtain
the decimal interest. Savings institutions use various
periods in compounding interest (quarterly, daily,
etc.). Flexibility may be added to the program by
providing @ means to tell the calculator how the
compounding is done. By incorporating the number
of compounding periods per year, the future value
equation may be rewritten as:

FV =PV x (1+(il100 = c))*"
The variables used above are:

FV = future value of investment

PV = present value of investment

i = annual interest rate (APR)

¢ = number of compounding periods per year
n=number of years of investment

PROGRAMMING

In this case, enter the variables into user data
memory. This allows the variables to be entered
individually and makes it easier to evaluate ditferent
possibilities. Note that when a program is to be
rerun using previously enlered data, care must be
taken to preserve the original data.

Investment Calculation Program

Press Comments
ILeL] [A] [sTO] [1] [R!S] Define Label A as PV
ILBL] [B] [8TO] (2] [R/S] Define Label B as i

ILed] [c) [sTO] 3] [RiS]

Define Label C as ¢

[LBL] [0] [sTO] [4] [RsS]

Define Label D as n

iLeLl [e]

Define Label E To Start
Program

[RCL] (2] (=] [1] [o] (o}

Convert | to Decimal
Format

[+hiRCL] (3] Find Interest Per
Compounding Period

[+1 00 =1yl 0 (] Determine Compound

IRCL] [3) [=] Interest Factor for cxn

Periods

IRCL] [4] [) 1 [=x][RCL]
[l (=]

Multiply By PV Tc Find
FV

[2nd] [Fix] [2)

Display FV Rounded To
Cents

[R/s]

355

PROGRAMMING

Investment Calculation Program Listing
000 LBL 025 1

001 A 026 0
002 sT0 0270
ocos o 028/

004 RS 028 RCL
005 LBL 03003

006 B 031+
007 8710 032 1
008 02 033=
008 R/S 034 Y/
010 LBL 035 (
(%2 1l 036 RCL
012 810 037 03
01303 038 x
014 RS 088 RCL
015 L8L 040 04
016D 041)
017 810 042 x
01804 043 RCL
018 RS Daa O
020 LBL 045 =
LA OFRE 1 115+ 46 R0C
“ ' g2z RCL 047 02
023 02 048 R/S
024/
User Instructions
Step Procedure Enter Press
1 Clear Program
Memory [2nd] [CP]
1a Partition Memory [2nd] IPart] 55 71.54
2 Enter Learn Mode ILRN] T
3 Enter Investment
Calculation
Program
4 Exit Learn Mode [LRN]

Variables May Be Entered In Any Order. Thema
Is No Need to Reenter Variables That Do Not
Change For New Problems

PROGRAMMING

B T

5 Enter present

Value PV [A] PV
6 Enter Annual

Interest i (8]
7 Enter Number of

Compounding

Periods Per year ¢ Icl c
8 Enter Number of

Years n (Dl n
9 Compute Future

Value |E] Fv

Find the future value of a 83,000 investment 5 years
from now if the annual return rate is 8%
compounded daily and compounded monthly.

Press Display Comments
3000 (A 3000 © PV

8 [8] 8 Vi

365 Ic] 385 "¢

5 (D] 57a

. 447528 FV

12 ic) 120091 ¢

[E] 446954 FV

3-57

PROGRAMMING

Pricing Control
Program

358

Thus far we have used the calculator's user data
memaories primarily for stering and recalling
variables. However, the calculator can add to,
subtract from, multiply and divide the variables .
stored in user data memories without recalling them.
Using the memory in this fashion is often referred to
as memory arithmetic. :

Assume a purchase order received in a business is
comprised of different items in various quantities. In
order to invoice the customer, multiply the quantity
for each line item by its unit price to find the line
item price. Then sum each line item price to
determine the total order price. Additionally, to keep
a record of the average unit price of each order, you
total the line item quantities and divide the sum into
the total order price.)

Line Item
Line Item Quantity Unit Price Price
1 100 0 an$0.25 $ 2500
2 200 , .15 30.00
3 50 0.35 17.50
4 150 0.40 60.00
5 300 0.10 30.00
Total Order 800 $162.50
Order Avg.
Unit Price $0.203125

To save time lost by displaying intermediate data,

the data are stored in memories for recalling later, if
desired. The cumulative order quantity is stored in
memory 1, the cumulative order price is stored in -
memory 2, and the current average unit price is
stored in memory 3. The program is designed to
display only one intermediate result, the line item
price of each line. The line item price is displayed
after the quantity of an item and its unit price is
entered. However, you may recall any of the other
results whenever you need to see them.

PROGRAMMING

One last note is that since the initial operations on
memories 1 and 2 are to be sum instructions, the
program should be equipped with an initialization
routine which zeros these user data memories.

The solution can be described as follows.

1. Initialize memories 1 and 2.

2. Accumulate the total order quantity in memory 1.

3. Store the guantity of the current item in memory
4,

4. Multiply the unit price into memory 4 to determine
the line item price.

5. Accumulate total order price in memory 2.

6. Memory 2 divided by memory 1 gives the average
item price and is then stored in memory 3.

Pricing Control Program Listing
000 LBL

024 O

OO1E 025 =
002 CMS 026 STO
003 CLR 027 03
004 FIX 028 RCL
005 02 029 04
006 RIS 030 RIS
007 LBL 031 LBL
008 A 032 B
009 SUM 033 RCL
010 01 034 01
011 STO 035 RIS
012 04 036 LBL
013 RIS 037 C

. 014 PRD 038 RCL
015 04 039 02
016 RCL 040 RIS
017 04 041 LBL
018 SUM 042D
019 g2 043 RCL
020 RCL 044 03
02102 045 RIS
022/
023 RCL

3-59

PROGRAMMING

User Instructions
Step Procedure Enter Press
1 Clear Program
Memory [2nd] [CP]
2 . Enter Learn Mode [LRN]
3 Enter Pricing
Control Program
4 Exit Learn Mode [LRN]
§ Initialize Program [E]
6 Enter Line Item Quan-
Quantity tity (Al
7 Enter Unit Price Unit

Price [Rss] Line ltem P

Each Line Item Entry the Following Vanablos
May be Displayed:

o gﬁﬂ?ﬁ"’ 0 ISELITL rotal Oror Gl
Cumulative Cost [Cl1 Total Order
Average Unit Price ID] Average Unt

Now let’s run the program using the data given

earlier.

Press Display Comments

[E] 000 Initialize

100 [A] 10000 Enter Quantity A

.25 [rssl 2500 Enter Unit Price A

Show Line Item Price

200 [a) 20000 Enter Quantity B

.15 |R1S] 3000 Enter Unit Price B

Show Line Item Price

PROGRAMMING

B BT ——

Spherical
Coordinates
Program

50 [A] 5000 Enter Quantity C

.35 [rss) 172.50 Enter Unit Price C
Show Line Item Price

150 [A) 150.00 Enter Quantity D

A [ris] 6000 Enter Unit Price D
Show Line Item Price

300 (al 30000 Enter Quantity E

1 [Ris) 30.00 Enter Unit Price E
Show line Item Price

[8] 800.00 Total Order Quantity

Icl 182.50 Total Order Price

Io] 0.20 . Avg. Unit Price (Rounded)

INV] [2nd] [Fix] 0203125 Avg. Unit Price (Exact)

Write a program to convert from spherical to
rectangular coordinates.

4
X=p sin ¢ cos @ #
y=psin § sin 8 8 L
Z=pcCos ¢ Y >
a b
P B e

X

Store p, §, and @ in memories 1, 2, and 3
respectively. Place pin the T-registér and ¢ in the
display register. Find z by using [2nd] [P>R]. This
conversion places p cos ¢ in the T-register. Use this
conversion again to find x and y after recalling @ to
the display register. The program is designed to
display x, y, and z by using the [R/S] key.

PROGRAMMING

Press

Display Comments

(L] (Al

Define Label A as p

IsTol [1] [Ris]

ILedl [e]

Define Label B as ¢

IsTOl [2] [rss)

ILeul icl

Define Label C as @

IsTO] (3] Irss]

iLed] ol

Define Label D To
Calculate Coordinates.

IRCL] 1]

gmﬂ{p HTo @z o sin

=t

[RCL] [2]

[2nd] [P~R]

[x=t]

1T

IsTO! 14]

IRCL] [3]

[2nd] [P>RI

Convert (p sin 4, 6) To
(x,y)

=t} [R/S]

Display x

Ixstl [R/S]

Press [R/S] To Display y

[RCL] 4]

Press [R/S] To Display 2z '

Irss]

PROGRAMMING

B R e O —

Spherical Coordinates Program Listing

000 LBL 018 X7
001 A 020 RCL
002 870 g21 02
003 01 022 P—R
004 R/S 023 XsT
005 LBL 024 870
Co6 B G25 04
007 STO 026 ACL
008 02 027 03
008 RS 028 P-R
010 LBL 028 XsT
011 C 030 A/S
012 ST0 031 X=T
01303 032 RS
D14 RS 033 RCL
015 LBL 034 D4
018 D 035 RS
017 RCL
018 01
User Instructions
Step Procedure Enter Press Display
1 Clear Program
Memory and Reset
. Program Pointer [2nd] [CP]
2 Enter Learn Mode [LRN] ST
3 Enter Program
4 Exit Learn Mode [LRNI
5 Enter p p (Al p
6 Enter $ $ i8] 4
7 Enter @ 6 icl 8
8A Compute
Coordinates and
Display x D] X
88 Display y [Rss] ¥
8C Display z [RiS] z

After entering the program, it may be tested with the

foliowing example.

363

PROGRAMMING

Example: Convert #= 19.6, $=60°, §=60° to

rectangular coordinates.
Z
—
$=60°
p=1986
8 =60°
X
Yol y
X
Press Display Comments
[2nd] [Degl Place calculator in
degree mode.
19.6 (Al 186 p
60 [8] 680 ¢
60 Icl B0 @
Iol 8.487048857 X
[Rss] 147 vy
[Rrs] 98 z

%

TEXAS INSTRUMENTS

INCORPORATED
Dallas. Texas

Printed in Japan 1062679-2

